File No. 270 URC6AT Solid State Division RF Power Transistors 2N5090 Features: JEDEC TO-60 1307 RCA-2N5090 is an epitaxial silicon n-p-n planar transistor employing the RCA-developed overlay emitter-electrode design. It is intended for rf amplifier, frequency-multiplier, and oscillator service in vhf and uhf communications equipment. The overlay structure contains many isolated emitter sites MAXIMUM RATINGS, Absolute-Maximum Values: *COLLECTOR-TO-BASE VOLTAGE .. Vcspo 55 Vv COLLECTOR-TO-EMITTER VOLTAGE: With external base-to-emitter resistance, Rag = 100 se 55 * With base open... 0... ce eee 30 <<< *EMITTER-TO-BASE VOLTAGE .... VeBo 3.5 *CONTINUOUS COLLECTOR CURRENT 2.2... cc cece eee ee eee Io 0.4 A *CONTINUOUS BASE CURRENT..... Ig 0.4 A *TRANSISTOR DISSIPATION ...... Pr At case temperatures up to 100C........... 4 WwW At case temperatures above 100C, . Derate tinearty at 0.04 W/C *TEMPERATURE RANGE: Storage & Operating (Junction)............ *LEAD TEMPERATURE (During soldering): At distances > 1/16 in. (4.58 mm) from insulating wafer for 10s max. .....- 1c eee ee 230 % -65to +200 C *1n accordance with JEDEC registration data format JS-6 RDF-3. High-Power Silicon N-P-N Overlay Transistor High-Gain Type for Class A, B, or C Operation in VHF/UHF Circuits = Maximum safe-area-of-operation curve = 1.2 W (min.) output at 400 MHz (7.8 dB gain) = 1.6 W (typ.) output at 175 MHz (12 dB gain) Hermetic stud-type package @ All electrodes isolated from stud connected in parallel by means of a diffused grid structure and a deposited metal overlay. The overlay design provides a very high emitter-periphery-to-emitter-area ratio and results in Jow output capacitance, high rf-current-handling capa- bility, and high power gain. @Formerly RCA Dev. No.TA7146. COLLECTOR CURRENT (I)mA 1 2 8 10 30 COLLECTOR-TO-EMITTER VOLTAGE (og) 100 SS-3628R2 Fig.1Safe area for de operation. 109 12-722N5090 ELECTRICAL CHARACTERISTICS, At Case Temperature (Tc) = 25C File No. 270 STATIC TEST CONDITIONS | bc Dc oc CHARACTERISTIC SYMBOL Collector Base Current LIMITS UNITS. Voitage-V | Voltage-V mA VcE VBE le lg le MIN. | MAX. *| Collector-Cutoff Current: With base open IcEO 28 0 > 0.02 With base-emitter junction reverse-biased 55 -1.5 = 0.1 mA With base-emitter junction reverse-biased & ICEv Te = 200C 30 -15 = 5 *! Emitter-Cutoff Current 'eEBO 35 = 01 mA Collector-to-Base Breakdown Voltage V(BRICBO 0 0.1 55 - v * Collector-to-Emitter Sustaining Voltage: With base-open VceEo (sus) 0 5 30 - Vv With external base-to-emitter resistance Vv (sus) (Ree) = 102 CER 5 55? - Emitter-to-Base Breakdown Voltage ViBR)EBO 0.1 0 3.5 - Vv *| Collector-to-Emitter Saturation Voltage Vee lsat) 20 100 _ 1.0 *! DC Forward-Current h 5 360 5 - Transfer Ratio FE 5 50 | 10 200 Thermal Resistance (Junction-to-Case) Resc - 25 ocw 8pulsed through a 25-mH inductor; duty factor = 0.05%. DYNAMIC TEST CONDITIONS DC Collector Output Input Collector | Frequency CHARACTERISTIC SYMBOL| Voltage | Power (Pog) | Power (Pi)| Current (Ic) ff) LIMITS | UNITS Vv w Ww mA MHz MIN. | MAX. Power Output (Class C amplifier ' = : 400 1, - unneutralized) (See Fig. 2) Poe | Vcc * 28 0.2 2 w Gain-Bandwidth Product fT Voce = 15 50 500 ~ MHz * | Magnitude of Common Emitter, Small-Signal, Short-Circuit Forward- | hte] Voge = 15 S50 25 _ Current Transfer Ratio * | Available Amplifier Signal Input Power P 1.2 400 | 0.2 w * | Collector Efficiency Ne 1.2 45 - % * | Coliector-to-Base Capacitance Cobo Vcp = 30 1 = 3.5 pF *tn accordance with JEDEC registration data format JS-6 RDF-3. c Por 3. (2.2500) Cy: 0.9-7 pF, ARCO 400, or equivatent C2, Cg: 1.5-20 pF, ARCO 402, or equivalent C4: 1,000 pF, feedthrough type L4: 2 turns No.18 wire, % in. (6.35 mm) ID, 1/8 in. (3.17 mm} long Lg: 3 turns No.16 wire, % in. (6.35 mm) ID, Veo 2 BV 32s . 3/8 in. (9.52 mm) tong cee S~3620R L3: 0.1 #H, RFC Lq: 2 turns No.18 wire, 1/8 in. (3.17 mm} ID, Fig.2-400-MHz rf amplifier for output power test. 110 1/8 in. (3.17 mm) longFile No. 270 2N5090 CASE TEMPERATURE (Tc) = 25C COLLECTOR-TO-EMITTER VOLTAGE (Vice) = 28 RF QUTPUT POWER (Pgg) RF inp, UT POWER ie) = 5p mW 100 20 0 400 600 FRE QUENCY (f) MHz 9255-3618R2 Fig.3Typical output power vs. frequency. CASE TEMPERATURE (Tc) = 25 C - 70. COULECTAN 1 Gay a i 4G, Sy Se! ; GAIN-BANOWIDTH PRODUCT (fy} MHz 20 40 60 80 too COLLECTOR CURRENT {I)mA 92CS-14634R2 Fig.5--Typical gain-bandwidth product vs. collector current. COLLECTOR-TO-EMITTER VOLTAGE (Vc@) = 15 CASE TEMPERATURE (Tc) = 25C = o ' > = <= =z e Q < w a b > & z a a = ib a ' ny sof 5 100 a 4 500 FREQUENCY (f}AHz 928S-3623R2 Fig.7Typical series input reactance vs. frequency. CASE TEMPERATURE (Tc) = 25 C RF INPUT POWER (Pye) = 0.2 # FREQUENCY (f} = 400 MHz = | wy o a we w = 6 a Fb 5 a E 3 5 4 5 10 1S 20 25 30 35 40 COLLECTOR SUPPLY VOLTAGE Weo-v 9285-361 9R2 Fig.4Typical output power vs. collector supply voltage. COLLECTOR-TO-EMITTER VOLTAGE (Veg) = 15 CASE TEMPERATURE (Tc) = 25 C n lS 50 SERIES INPUT RESISTANCE|Re thie) re 3 tnd COLLECTOR CURRENT (le) = 25 M mA | tod Bt to] 16 4 0 100 : FREQUENCY (f) MHz 92S8-3622R2 Fig.6Typical series input resistance vs. frequency. COLLECTOR-TO-EMITTER VOLTAGE (Vce) = 15 COLLECTOR CURRENT (ic) = 25 mA 5 CASE TEMPERATURE (Tc) = 25C i? _ 24 Re (hie) as = +|__| a . aw % g =z z 15 15 = a (10 7 Es Als z | = no a ) a = ww us Le a 10 Jee] -15 pot 5S & 100 : a) FREQUENCY (f) MHz 5288-3624R2 Fig.8Typical series input resistance and reactance vs. frequency.2N5090 File No. 270 COLLECTOR-TO-EMITTER VOLTAGE (Veg) = 15 CASE TEMPERATURE (Tc) = 25 C COLLECTOR-TO-EMITTER VOLTAGE [Vcg) = 15 CASE TEMPERATURE (Tc) = 25 C _ = R = PARALLEL OUTPUT CAPACITANCE (Cye9)- pF oo & & ne PARALLEL QUTPUT RESISTANCE 5 Of & 100 2 ar) sof & 100 2 ar) FREQUENCY (f) - MHz FREQUENCY (f}- MHz 92SS-3625R2 9288-3625R2 Fig.9~Typical parallel output resistance vs. frequency. Fig.10Typica# parallel output capacitance vs. frequency. COLLECTOR-TO-EMITTER VOLTAGE (Vcx} = 15 LT ree ee . COLLECTOR CURRENT (Ic) = 25 mA CASE TEMPERATURE (Tc)#25C CASE TEMPERATURE (Tc) = 250 C NI Tt fe ay 22) PARALLEL QUTPUT CAPACITANCE (Cyeo) ~ pF & 1 8 $ w : Z 2 5 e 3 8 10 a ooo) 8 manne a -4 2 10 5 8 100 ; 500 FREQUENCY (MHz COLLECTOR-TO-BASE VOLTAGE (Vcog)V 925S-3G27R2 S2CS-IBISTRZ Fig.11Typical parallel output resistance and capacitance vs. Fig.12-Typical variation of callector-to-base capacitance. frequency. with collector-to-base voltage. [= S DIMENSIONAL OUTLINE, JEDEC TO-60 i f 3 | | E to . * le @ INCHES MILLIMETERS | | eg NOTES: i ha @ SYMBOL| MIN. MAX. | MIN. MAX. Tv 1. Dimension does not include sealing flanges ! 2. Package contour optional within dimensions specified + Tt A | 0.215 | 0.320 | 5.46 | 8.13 3. Pitch diameter ~ 10-32 UNF 2A thread (coated) T Tl Ay - 0.165 ~ 4.19 2 4. Pin spacing perimts insertion in any socket having a re pb 0.030 | 0.046 0.762] 1.17 4 pin-circle diameter of 0.200 in. (5,08 mm} and con- : tacts which will accommodate pins with a diameter >" #0 eD | 0.360 | 0.437 | 9.14 | 11.10 2 of 0.030 in. (0.762 mm) min., 0.046 in. (1.17mm) max. ody 0.320 | 0.360 8.13 9.14 5. The torque applied to a 10-32 hex nut assembled on the E 0.424 | 0.437 | 10.77 | 11.10 thread during installation should not exceed 12 inch- ay | $b e 0.185 | 0.215 | 4.70 | 5.46 pounds. | (| e, | 0.090 {0110 | 229 | 279 |. F {0090 | 0136 | 229 | 3.43 1 J | | J | 0.355 | 0480 | 9.02 | 12.19 TERMINAL CONNECTIONS ae 4 A : ! om =| 0.163 | 0.189 | 4.14 | 480 Pin No. 1 Emitter A ! C F N | 0.375 | 0.455 | 953 | 11.56 Pin No. 2 Base r Ny ~ | 0078 | | 1.98 Pin No, 3 ~ Collector arene Ni ow 0.1658 | 0.1697 4.212 4.310 3, 5 | CaseIsolated oM N ==] ow 92S~iaoig 112