© by SEMIKRON 0898 B 6 177
Absolute Maximum Ratings Values
Symbol Conditions 1) Units
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
RGE = 20 k
Tcase = 25/65 °C
Tcase = 25/65 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
1200
1200
380 / 300
760 / 600
± 20
1650
–40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
°C
V
Inverse Diode
IF = –IC
IFM = –ICM
IFSM
I2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
260 / 180
760 / 600
2 200
24 200
A
A
A
A2s
Characteristics
Symbol Conditions 1) min. typ. max. Units
V(BR)CES
VGE(th)
ICES
IGES
VCEsat
VCEsat
gfs
VGE = 0, IC = 4 mA
VGE = VCE, IC = 8 mA
VGE = 0 Tj = 25 °C
VCE = VCES Tj = 125 °C
VGE = 20 V, VCE = 0
IC = 200 A VGE = 15 V;
IC = 300 A Tj = 25 (125) °C
VCE = 20 V, IC = 200 A
VCES
4,5
110
5,5
15
2,1(2,4)
2,6(3,1)
6,5
10
0,4
2,45(2,85)
V
V
mA
mA
µA
V
V
S
CCHC
Cies
Coes
Cres
LCE
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
13
2
1,0
700
1,3
20
pF
nF
nF
nF
nH
td(on)
tr
td(off)
tf
Eon
Eoff
VCC = 600 V
VGE = –15 V / +15 V3)
IC = 200 A, ind. load
RGon = RGoff = 6
Tj = 125 °C
90
60
600
55
29
28
ns
ns
ns
ns
mWs
mWs
Inverse Diode 8)
VF = VEC
VF = VEC
VTO
rt
IRRM
Qrr
IF = 200 A VGE = 0 V;
IF = 300 A Tj = 25 (125) °C
Tj = 125 °C
Tj = 125 °C
IF = 200 A; Tj = 125 °C2)
IF = 200 A; Tj = 125 °C2)
2,0(1,8)
2,25(2,1)
1,1
120
25
2,5
1,2
5,5
V
V
V
m
A
µC
Thermal character isti c s
Rthjc
Rthjc
Rthch
per IGBT
per diode
per module
0,075
0,18
0,038
°C/W
°C/W
°C/W
SEMITRANS® M
Low Loss IGBT Modules
SKM 300 GB 124 D
Features
MOS input (voltage controlled)
N channel, homogeneous Silicon
structure (NPT- Non punch-
through IGBT)
Low inductance case
Very low tail current with low
temperature dependence
High short circuit capability,
self limiting to 6 * Icnom
Latch-up free
Fast & soft inverse CAL diodes 8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
Large clearance (12 mm) and
creepage distances (20 mm)
Typical Applications
Switching (not for linear use)
AC in verter drives
UPS
1) Tcase = 25 °C, unless otherwise
specified
2) IF = – IC, VR = 600 V,
–diF/dt = 2000 A/µs, VGE = 0 V
3) Use VGEoff = – 5 ... – 15 V
8) CAL = Controlled Axial Lifetime
Technology
Cases and mech. data
B 6 182
GB
SEMITRANS 3
http://store.iiic.cc/
© by SEMIKRONB 6 – 178 0898
SKM 300 GB 124 D
M300G124.XLS-6
0
2
4
6
8
10
12
0 200 400 600 800 1000 1200 1400
V
CE
V
I
CSC
/I
C
all owed num bers of
s ho rt circuits: <1 000
t i me between sh ort
circuits: >1s
di/d t=30 0 A/ µs
900 A/µs
1500 A/µs
M300G124.XLS-5
0
0,5
1
1,5
2
2,5
0 200 400 600 800 1000 1200 1400
V
CE
V
I
Cpuls
/I
C
M300G124.XLS-4
1
10
100
1000
1 10 100 1000 10000
V
CE
V
I
C
At
p
=42µs
100µs
1ms
10ms
M300G124.XLS-3
0
20
40
60
80
100
120
0 102030405060
R
G
E
mWs E
on
E
off
M300G124.XLS-2
0
20
40
60
80
100
0 100 200 300 400 500
I
C
A
E
mWs
E
on
E
off
M300G124.XLS-1
0
200
400
600
800
1000
1200
1400
1600
1800
0 20 40 60 80 100 120 140 160
T
C
°C
P
tot
W
Fig. 3 Turn-on /-off energy = f (R
G
) Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 1 Rated power dissipation P
tot
= f (T
C
) Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
T
j
= 125 °C
V
CE
= 600 V
V
GE
= + 15 V
R
G
= 6
1 pulse
T
C
= 25 °C
T
j
150 °C
T
j
= 125 °C
V
CE
= 600 V
V
GE
= + 15 V
I
C
= 200 A
T
j
150 °C
V
GE
= ± 15 V
t
sc
10 µs
L < 25 nH
I
C
= 200 A
T
j
150 °C
V
GE
= ± 15 V
R
Goff
= 6
I
C
= 200 A
Not fo r
linear use
http://store.iiic.cc/
© by SEMIKRON B 6 – 1790898
M300G124.XLS-12
0
100
200
300
400
02468101214
V
G
E
V
I
C
A
M300G124.XLS-10
0
100
200
300
400
012345
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M300G124.XLS-9
0
100
200
300
400
012345
V
CE
V
I
C
A17V
15V
13V
11V
9V
7V
M300G124.XLS-8
0
80
160
240
320
400
0 20 40 60 80 100 120 140 160
T
C
°C
I
C
A
P
cond(t)
= V
CEsat(t)
· I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
· I
C(t)
V
CE(TO)(Tj)
1,3 + 0,0005 (T
j
–25) [V]
typ .: r
CE(Tj)
= 0,004 + 0,000013 (T
j
–25) [
]
max.: r
CE(Tj)
= 0,0058 + 0,000018 (T
j
–25) [
]
valid for V
GE
= + 15 [V]; I
C
0,3 I
Cnom
Fig. 9 Typ. output characteris tic , t
p
= 80 µs; 25 °C Fig. 10 Typ. output character istic , t
p
= 80 µs; 125 °C
Fig. 8 Rated current vs . te mperature I
C
= f (T
C
)
+2
–1
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equation s Fig. 12 Typ. transfer characteris tic, t
p
= 80 µs; V
CE
= 20 V
T
j
= 150 °C
V
GE
15V
http://store.iiic.cc/
© by SEMIKRONB 6 – 180 0898
SKM 300 GB 124 D
M300G124.XLS-18
0
2
4
6
8
10
12
14
0 100 200 300 400
I
F
A
E
offD
mJ
14 Ω
8 Ω
40 Ω
5 Ω
R
G
=3 Ω
M300G124.XLS-17
0
100
200
300
400
0123
V
F
V
I
F
A
T
j
= 1 25°C, typ.
T
j
= 25°C, t y p.
T
j
= 1 25°C, m a x.
T
j
=25°C, max .
M300G124.XLS-16
10
100
1000
10000
0 102030405060
R
G
t
ns t
doff
t
don
t
r
t
f
M300G124.XLS-15
10
100
1000
0 100 200 300 400 500
I
C
A
t
ns t
doff
t
don
t
r
t
f
M300G124.XLS-14
0,1
1
10
100
0102030
V
CE
V
C
nF
C
ies
C
oes
C
res
M300G124.XLS-13
0
2
4
6
8
10
12
14
16
18
20
0 200 400 600 800 1000 1200 1400
Q
Gate
nC
V
GE
V
600V
800V
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V
CE
V
GE
= 0 V
f = 1 MH z
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. switching times vs. gate resistor R
G
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipat ion per pulse
T
j
= 125 °C
V
CE
= 600 V
V
GE
= ± 15
V
I
C
= 200 A
induct. load
I
Cpuls
= 200 A
T
j
= 125 °C
V
CE
= 600 V
V
GE
= ± 15 V
R
Gon
= 6
R
Goff
= 6
induct. load
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15 V
http://store.iiic.cc/
© by SEMIKRON B 6 – 1810898
M300G124.XLS-23
0
100
200
300
400
0 2000 4000 6000 8000
di
F
/dt A/µs
I
RR
A
14 Ω
8 Ω
40
5 Ω
R
G
=3 Ω
M300G124.XLS-20
0,00001
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
s
Z
thJC
K/W
D=0,5
0,2
0,1
0,05
0,02
0,01
s ing le pul se
t
p
M300G124.XLS-24
0
10
20
30
40
50
0 2000 4000 6000 8000 10000
di
F
/dt A/µs
Q
rr
µC
I
F
=
200
150 A
100 A
50 A
14 Ω 8 Ω
40 Ω
5 Ω
R
G
=
3 Ω
300 A
M300G124.XLS-22
0
100
200
300
400
0 100 200 300 400
I
F
A
I
RR
A
14 Ω
8 Ω
40 Ω
5 Ω
R
G=
3 Ω
M300G124.XLS-19
0,00001
0,0001
0,001
0,01
0,1
0,00001 0,0001 0,001 0,01 0,1 1
t
p
s
Z
thJC
K/W
D=0,50
0,20
0,10
0,05
0,02
0,01
s ing le pul se
Fig. 19 Transient thermal impedance of IGBT
Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
· f Fig. 20 Transient thermal impedance of
inverse CAL diodes Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
· f
Fig. 22 Typ. CAL diode peak reverse recovery
current I
RR
= f (I
F
; R
G
)Fig. 23 Typ. CAL diode peak reverse recovery
current I
RR
= f (di
F
/d t; R
G
)
Fig. 24 Typ. CAL diode recovered charg e
Q
RR
= f (di
F
/d t; I
F
; R
G
)
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15 V
I
F
= 200 A
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15 V
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15 V
http://store.iiic.cc/
© by SEMIKRONB 6 – 182 0898
SKM 300 GB 124 D
SEMITRANS 3
Case D 56
UL Recognized
File no. E 63 532
SKM 300 GB 124 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions Values Units
min. typ. max.
M
1
M
2
a
w
to heatsink, SI Units (M6)
to heatsink, US Units
for terminals, SI Units (M6)
for terminals, US Units
3
27
2,5
22
5
44
5
44
5x9,81
325
Nm
lb.in.
Nm
lb.in.
m/s
2
g
This is an electrost atic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Three devices are supplied in one
SEMIBOX A without mounting hard -
ware, which can be ordered s epara-
tely under Ident No. 33321100
(for 10 SEMITRANS 3)
Larger pa cking units of 1 2 or 20 pie -
ces are used if suitable
Accessories
B 6 – 4
SEMIBOX
C
1.
http://store.iiic.cc/