Absolute Maximum Ratings Values Symbol Conditions 1) VCES VCGR IC ICM VGES Ptot Tj, (Tstg) Visol humidity climate Units RGE = 20 k Tcase = 25/65 C Tcase = 25/65 C; tp = 1 ms per IGBT, Tcase = 25 C AC, 1 min. DIN 40040 DIN IEC 68 T.1 1200 1200 380 / 300 760 / 600 20 1650 -40 ... +150 (125) 2500 Class F 40/125/56 V V A A V W C V 260 / 180 760 / 600 2 200 24 200 A A A A2s SEMITRANS(R) M Low Loss IGBT Modules SKM 300 GB 124 D Inverse Diode IF = -IC IFM = -ICM IFSM I 2t Tcase = 25/80 C Tcase = 25/80 C; tp = 1 ms tp = 10 ms; sin.; Tj = 150 C tp = 10 ms; Tj = 150 C SEMITRANS 3 Characteristics Symbol Conditions 1) V(BR)CES VGE = 0, IC = 4 mA VGE(th) VGE = VCE, IC = 8 mA ICES Tj = 25 C VGE = 0 VCE = VCES Tj = 125 C IGES VGE = 20 V, VCE = 0 VCEsat IC = 200 A VGE = 15 V; IC = 300 A Tj = 25 (125) C VCEsat gfs VCE = 20 V, IC = 200 A CCHC Cies Coes Cres LCE td(on) tr td(off) tf Eon Eoff per IGBT VGE = 0 VCE = 25 V f = 1 MHz VCC = 600 V VGE = -15 V / +15 V3) IC = 200 A, ind. load RGon = RGoff = 6 Tj = 125 C min. typ. max. Units - 5,5 - 15 - 2,1(2,4) 2,6(3,1) - 6,5 10 - 0,4 2,45(2,85) - - V V mA mA A V V S - - - - 13 2 1,0 - 700 - - 1,3 20 pF nF nF nF nH - - - - - - 90 60 600 55 29 28 - - - - - - ns ns ns ns mWs mWs - - - - - - 2,0(1,8) 2,25(2,1) 1,1 - 120 25 2,5 - 1,2 5,5 - - V V V m A C - - - - - - 0,075 0,18 0,038 C/W C/W C/W VCES 4,5 - - - - - 110 - Inverse Diode 8) VF = VEC VF = VEC VTO rt IRRM Qrr IF = 200 A VGE = 0 V; IF = 300 A Tj = 25 (125) C Tj = 125 C Tj = 125 C IF = 200 A; Tj = 125 C2) IF = 200 A; Tj = 125 C2) Thermal characteristics Rthjc Rthjc Rthch per IGBT per diode per module GB Features * MOS input (voltage controlled) * N channel, homogeneous Silicon structure (NPT- Non punchthrough IGBT) * Low inductance case * Very low tail current with low temperature dependence * High short circuit capability, self limiting to 6 * Icnom * Latch-up free * Fast & soft inverse CAL diodes 8) * Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould * Large clearance (12 mm) and creepage distances (20 mm) Typical Applications * Switching (not for linear use) * AC inverter drives * UPS 1) 2) 3) 8) Tcase = 25 C, unless otherwise specified IF = - IC, VR = 600 V, -diF/dt = 2000 A/s, VGE = 0 V Use VGEoff = - 5 ... - 15 V CAL = Controlled Axial Lifetime Technology Cases and mech. data B 6 - 182 (c) by SEMIKRON 0898 http://store.iiic.cc/ B 6 - 177 SKM 300 GB 124 D M300G124.X LS-1 1800 M300G124.X LS -2 100 W Tj = 125 C VCE = 600 V VGE = + 15 V RG = 6 mWs 1600 80 1400 E on 1200 60 1000 800 E off 40 600 400 20 200 E P tot 0 0 0 20 40 60 80 100 TC 120 140 160 C 0 Fig. 1 Rated power dissipation Ptot = f (TC) 300 400 500 A M300G124.X LS -4 Tj = 125 C VCE = 600 V VGE = + 15 V IC = 200 A E on mWs 200 Fig. 2 Turn-on /-off energy = f (IC) M300G124.X LS-3 120 100 IC 100 1000 tp=42s A 100s 80 1 pulse TC = 25 C Tj 150 C 100 1ms 60 E off 40 10 Not for linear use 10ms 20 IC E 0 1 0 10 20 30 40 RG 50 60 1 Fig. 3 Turn-on /-off energy = f (RG) 100 1000 10000 V Fig. 4 Maximum safe operating area (SOA) IC = f (VCE) M300G124.X LS -5 2,5 10 VCE 2 Tj 150 C 12 VGE = 15 V RGoff = 6 IC = 200 A 10 M300G124.X LS -6 di/dt=300 A/s 900 A/s 1500 A/s 8 1,5 Tj 150 C VGE = 15 V tsc 10 s L < 25 nH IC = 200 A 6 4 allowed numbers of short circuits: <1000 2 time between short circuits: >1s 1 0,5 ICpuls/IC ICSC/IC 0 0 0 200 V CE 400 600 800 Fig. 5 Turn-off safe operating area (RBSOA) B 6 - 178 0 1000 1200 1400 V 200 V CE 400 600 800 1000 1200 1400 V Fig. 6 Safe operating area at short circuit IC = f (VCE) 0898 http://store.iiic.cc/ (c) by SEMIKRON M3 0 0G1 24 .X LS -8 400 Tj = 150 C VGE 15V A 320 240 160 80 IC 0 0 20 40 60 80 100 120 140 TC 160 C Fig. 8 Rated current vs. temperature IC = f (TC) M300G124.X LS -9 400 M300G124.X LS-10 400 A A 17V 15V 13V 11V 9V 7V 300 17V 15V 13V 11V 9V 7V 300 200 200 100 100 IC IC 0 0 0 1 2 3 V CE 4 V 5 Fig. 9 Typ. output characteristic, tp = 80 s; 25 C 0 1 2 3 4 5 V CE V Fig. 10 Typ. output characteristic, tp = 80 s; 125 C M300G124.X LS-12 400 Pcond(t) = VCEsat(t) * IC(t) A VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) * IC(t) 300 VCE(TO)(Tj) 1,3 + 0,0005 (Tj -25) [V] 200 typ.: rCE(Tj) = 0,004 + 0,000013 (Tj -25) [] 100 max.: rCE(Tj) = 0,0058 + 0,000018 (Tj -25) [] +2 valid for VGE = + 15 -1 IC [V]; IC 0,3 ICnom 0 0 2 V GE Fig. 11 Saturation characteristic (IGBT) Calculation elements and equations (c) by SEMIKRON 4 6 8 10 12 V 14 Fig. 12 Typ. transfer characteristic, tp = 80 s; VCE = 20 V 0898 http://store.iiic.cc/ B 6 - 179 SKM 300 GB 124 D M300G124.X LS-13 20 M300G124.X LS -14 100 ICpuls = 200 A V 18 VGE = 0 V f = 1 MHz nF 16 600V Cies 14 10 12 800V 10 Coes 8 1 6 Cres 4 C V GE 2 0 0,1 0 200 400 600 800 QGate 1000 1200 1400 nC 0 10 20 Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.VCE M300G124.X LS-15 1000 30 V V CE tdoff ns M300G124.X LS -16 10000 Tj = 125 C VCE = 600 V VGE = 15 V RGon = 6 RGoff = 6 induct. load ns tdoff 1000 tdon 100 Tj = 125 C VCE = 600 V VGE = 15 V IC = 200 A induct. load tdon tr tr tf 100 tf t t 10 10 0 100 200 300 400 500 M300G124.X LS -17 400 10 20 30 40 50 M300G124.X LS -18 14 mJ Tj=125C, typ. VCC = 600 V Tj = 125 C VGE = 15 V 3 RG= 12 Tj=25C, typ. 300 60 RG Fig. 16 Typ. switching times vs. gate resistor RG Fig. 15 Typ. switching times vs. IC A 0 A IC 5 10 Tj=125C, max. Tj=25C, max. 8 8 6 14 200 4 100 40 2 E offD IF 0 0 0 1 VF 2 100 IF V Fig. 17 Typ. CAL diode forward characteristic B 6 - 180 0 3 200 300 400 A Fig. 18 Diode turn-off energy dissipation per pulse 0898 http://store.iiic.cc/ (c) by SEMIKRON M 30 0G1 24 .X LS -1 9 0,1 M 30 0G1 24 .X LS -2 0 1 K/W K/W 0,1 0,01 0,01 0,001 D=0,50 0,20 0,10 0,05 0,02 0,01 0,0001 single pulse D=0,5 0,2 0,1 0,05 0,02 0,01 0,001 single pulse 0,0001 ZthJC ZthJC 0,00001 0,00001 0,0001 0,001 0,01 0,1 0,00001 0,00001 1 s tp M300G124.X LS-22 A 0,001 0,01 0,1 1 s Fig. 20 Transient thermal impedance of inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp * f Fig. 19 Transient thermal impedance of IGBT ZthJC = f (tp); D = tp / tc = tp * f 400 0,0001 tp RG= 3 M300G124.X LS-23 400 VCC = 600 V Tj = 125 C VGE = 15 V A RG= 3 300 300 5 5 8 200 200 8 14 14 100 VCC = 600 V Tj = 125 C VGE = 15 V IF = 200 A 40 100 40 IRR IRR 0 0 0 100 200 300 400 IF 0 2000 diF/dt A 4000 6000 8000 A/s Fig. 23 Typ. CAL diode peak reverse recovery current IRR = f (diF/dt; RG) Fig. 22 Typ. CAL diode peak reverse recovery current IRR = f (IF; RG) M300G124.X LS-24 50 VCC = 600 V Tj = 125 C VGE = 15 V C RG= 40 3 5 IF= 300 A 8 14 30 200 40 150 A 20 100 A 50 A 10 Qrr 0 0 2000 diF/dt 4000 6000 8000 10000 A/s Fig. 24 Typ. CAL diode recovered charge QRR = f (diF/dt; IF; RG) (c) by SEMIKRON 0898 http://store.iiic.cc/ B 6 - 181 SKM 300 GB 124 D SEMITRANS 3 Case D 56 UL Recognized File no. E 63 532 SKM 300 GB 124 D Dimensions in mm Case outline and circuit diagram Mechanical Data Symbol Conditions M1 M2 a w B 6 - 182 to heatsink, SI Units to heatsink, US Units for terminals, SI Units for terminals, US Units Values (M6) (M6) Units min. typ. max. 3 27 2,5 22 - - - - - - - - 5 44 5 44 5x9,81 325 0898 http://store.iiic.cc/ Nm lb.in. Nm lb.in. m/s2 g This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX. Three devices are supplied in one SEMIBOX A without mounting hardware, which can be ordered separately under Ident No. 33321100 (for 10 SEMITRANS 3) Larger packing units of 12 or 20 pieces are used if suitable Accessories B 6 - 4 SEMIBOX C - 1. (c) by SEMIKRON