CAPACITORS
26th edition
Correct Use of Solid Tantalum Capacitors
Most tantalum capacitor failures are the result of leakage current or shor t circuits.
Please refer to Notes on Using the Tantalum Capacitors on pages 31 to 39 of this
brochure before designing tantalum capacitors into your system.
NEC offers the latest technology
NEC has been manufacturing solid electrolyte
tantalum capacitors for more than 30 years. As
a result of NEC’s active research and develop-
ment programs, NEC capacitors offer the de-
signer the latest technology plus outstanding
performance.
NEC capacitors are used extensively in indus-
trial, commercial, entertainment, and medical
electronic equipment.
NEC has obtained ISO 9001 and QS9000 certifi-
cates of registration for capacitors.
The low-ESR conductive polymer tantalum ca-
pacitors are expected to meet an important
market need; ther are suited for DC/DC convert-
ers, video cameras, personal handy phones,
etc.
<Tantalum Capacitors> <Conductive Polymer Tantalum Capacitors>
“NeoCapacitors”
3SELECTION GUIDE EC0171EJSV0SG00
TABLE OF CONTENTS
Tantalum Capacitors................................................................................................................. 4
R Series Tantalum Chip Capacitors ................................................................................ 5
SV/S Series Tantalum Chip Capacitors......................................................................... 11
SV/H Series Tantalum Chip Capacitors (Higher Perfor mance Type)........................... 13
SV/F Series Tantalum Chip Capacitors (Fuse Built-in Type) ....................................... 16
SV/Z Series Tantalum Chip Capacitors (Low-ESR Type)............................................. 19
Tape and Reel Specifications ........................................................................................ 21
Conductive Polymer Tantalum Capacitors (NeoCapacitors)
PS/L Series NeoCapacitors ........................................................................................... 23
PS/N Series NeoCapacitors........................................................................................... 26
Tape and Reel Specifications ........................................................................................ 29
Notes on Using the Solid Tantalum Capacitors ............................................................ 31
Notes on Using the Chip Tantalum Capacitors, excluding NeoCapacitors................. 34
Notes on Using NeoCapacitors ..................................................................................... 37
4SELECTION GUIDE EC0171EJSV0SG00
Description
NEC’s tantulum capacitors offer the designer advanced
technological design and excellent perfor mance charac-
teristics for filtering, bypassing, coupling, decoupling,
blocking, and R C timing circuits. They are used exten-
sively in industrial, commercial, entertainment, and medi-
cal electronic equipment.
The tantalum capacitor is inherently very reliable and
there is significant evidence that this reliability improves
with ageperhaps indefinitely. Capacitance loss with age
and other problems often associated with liquid electro-
lytes are nonexistent in solid electrolyte tantalums.
A process used to further improve the reliability of
tantalums is to burn them in at elevated voltages at 85°C
for extended periods of time, thus eliminating high leak-
age and other undesirable characteristics. This process
is done because solid electrolyte tantalum capacitors do
not conform to the exponential distribution of time or-
dered failures, but instead exhibit a constantly decreas-
ing failure rate.
If you specify NEC tantalums, you can feel confident that
you are getting the best available quality, reliability, and
price.
CHIP T ANTALUM CAP ACITORS
Conventional Type (Manganese Diocide Type)
Operating DC Rated Capacitance Capacitance DC Leakage Tangent of
Series Temperature Voltage Range (
µ
F) Tolerance Current Loss Angle Features
Range (˚C) Range (V) (%) (
µ
A)
(Standard) (Standard) ±20 Standard
4 to 50 0.47 to 68 ±10
R55 to +125
(Extended) (Extended) ±20 Miniaturized
2.5 to 35 0.47 to 470 ±10
SV/S 55 to +125 2.5 to 16 0.47 to 33 ±20 0.1, 0.2 (3)Ultra miniaturized
SV/H 55 to +125 10 to 35 0.47 to 33 ±20
Higher perfor mance
±10
SV/F 55 to +125 10 to 50 1 to 47 ±20 Built-in Fuse
±10
SV/Z 55 to +125 4 to 10 10 to 330 ±20 0.08 to 0.14 (4)Low ESR
NeoCapacitor (Conductive Polymer Type)
PS/L 55 to +105 4 to 10 3.3 to 330 ±20 0.09 to 0.50 (5)Ultra-low ESR
PS/N 55 to +85 4 to 16 3.3 to 220 ±20 0.09 to 0.50 (5)Low ESR
0.01 CV(1) or 0.5
whichever is
greater
Notes 1. Product of capacitance in
µ
F and voltage in V.
2. Refer to Standard Ratings on pages 9,10
3. Refer to Standard Ratings on page 12
4. Refer to Standard Ratings on page 20
5. Refer to Standard Ratings on page 25
0.01 CV(1) or 0.5
whichever is
greater
0.01 CV(1) or 0.5
whichever is
greater
0.01 CV(1) or 0.5
whichever is
greater
0.01 CV(1) or 0.5
whichever is
greater
0.1 CV(1) or 3,
whichever is
greater
0.047 to 4.7
µ
F : 0.04
6.8 to 68
µ
F : 0.06
0.47 to 4.7
µ
F : 0.04
6.8 to 33
µ
F : 0.06
1 to 4.7
µ
F : 0.04
6.8 to 47
µ
F : 0.06
0.01 CV(1) or 0.5
whichever is
greater
0.1 CV(1) or 3,
whichever is
greater
2.5 Vdc to 10 Vdc(2)
: 0.08 to 0.16
16 Vdc to 35 Vdc
: 0.06, 0.10
TANTALUM CAPACITORS
5SELECTION GUIDE EC0171EJSV0SG00
R Series Tantalum Chip Capacitors
DIMENSIONS [mm]
Case
Code LW1W2HZY
A2 (U)3.2 ± 0.2 1.6 ± 0.2 1.2 ± 0.1 1.1 ± 0.1 0.8 ± 0.2
A 3.2 ± 0.2 1.6 ± 0.2 1.2 ± 0.1 1.6 ± 0.2 0.8 ± 0.2
B3 (W)3.5 ± 0.2 2.8 ± 0.2 2.2 ± 0.1 1.1 ± 0.1 0.8 ± 0.2
B2 (S)3.5 ± 0.2 2.8 ± 0.2 2.3 ± 0.1 1.9 ± 0.2 0.8 ± 0.2
B 4.7 ± 0.2 2.6 ± 0.2 1.4 ± 0.1 2.1 ± 0.2 0.8 ± 0.2 0.4 C
C 6.0 ± 0.2 3.2 ± 0.2 2.2 ± 0.1 2.5 ± 0.2 1.3 ± 0.2 0.4 C
D2 (T)5.8 ± 0.2 4.6 ± 0.2 2.4 ± 0.1 3.2 ± 0.2 1.3 ± 0.2
D 7.3 ± 0.2 4.3 ± 0.2 2.4 ± 0.1 2.8 ± 0.2 1.3 ± 0.2 0.5 C
(STANDARD C-V VALUE REFERENCE BY CASE CODE)
4 6.3 10 16 20 25 35 50
µ
F
0.47 A B2, B B2
0.68 A B2, B C
1.0 A B2, B C
1.5 A A B2, B C C
2.2 A A B2, B C D
3.3 A A B2, B C C, D D, D2
4.7 A B2, B C C D2, D D
6.8 B2, B C C D2, D D2, D
10 B2, B C C D2, D D2, D
15 C C D2, D D2, D
22 C C D2, D D2, D
33 C D2, D D2, D
47 D2, D D2, D
68 D2, D
PERFORMANCE CHARACTERISTICS
Operating temperature range
55 to +125°C with proper voltage
derating as shown in the following table.
DC working voltage and surge voltage
Rated voltage 2.5 4 6.3 10 16 20 25 35 50 V
at 85°C 2.5 4 6.3 10 16 20 25 35 50 V
Working at 125°C 1.6 2.5 4 6.3 10 13 16 22 32 V
Surge at 85°C 3.35.28 132026334665V
Capacitance (at 20°C, 120 Hz)
Range: 0.47
µ
F to 470
µ
F
Tolerance: ± 20%, (±10%)
Capacitance change with temperature
Not to exceed 12% at 55°C, +12% at
85°C, and +15% at 125°C
Tangent of loss angle (at 20°C, 120 Hz)
(Standard)
0.047
µ
F to 4.7
µ
F: less than 0.04
6.8
µ
F to 68
µ
F: less than 0.06
(Extended)(1)
2.5 Vdc to 10 Vdc: less than 0.08
16 Vdc to 35 Vdc: less than 0.06
DC leakage current (at 20°C)
0.01 CV(2)
µ
A or 0.5
µ
A, whichever is greater
Damp heat (90 to 95% RH at 40°C, 56 days (1344 h))
Capacitance change: ±5% (±12%)(3)
Tangent of loss angle: 150% of initial
requirements
DC leakage current: initial requirements
Endurance (at 85°C, DC rated v oltage, 2000 h)
Capacitance change: ±10% (±12%)(3)
Tangent of loss angle: initial requirements
DC leakage current: 125% of
initial requirements
Resistance to soldering heat
(solder reflow at 260°C, 10 s.
or solder dip at 260°C, 5 s.)
Capacitance change: +5% (+12%)(3)
Leakage current: initial requirements
Tangent of loss angle: initial requirements
NEC obtained IEC Qualification Approv al on R
Series Standard Ratings in September 1987.
1. Refer to standard ratings f or tangent of loss angle of the f ollo w-
ing items:
2.5 V/15
µ
F, 22
µ
F, 4 V/10
µ
F, 15
µ
F, 22
µ
F, 6.3 V/15
µ
F prod-
ucts in A2 case.
2.5 V/47
µ
F, 68
µ
F, 4 V/33
µ
F, 47
µ
F, 6.3 V/22
µ
F, 33
µ
F, 16 V/
10
µ
Fproducts in A case.
2.5 V/47
µ
F, 68
µ
F, 100
µ
F, 4 V/33
µ
F, 47
µ
F, 68
µ
F, 6.3 V/22
µ
F,
33
µ
F, 47
µ
F, 10V/15
µ
F, 22
µ
F, 16 V/10
µ
F products in B3 case.
2.5 V/150
µ
F, 220
µ
F, 4 V/100
µ
F, 150
µ
F, 6.3 V/68
µ
F, 100
µ
F
products in B2 case.
2.5 V/220
µ
F, 470
µ
F, 4 V/150
µ
F, 220
µ
F, 6.3 V/100
µ
F, 150
µ
F,
220
µ
F products in C case.
2.5 V/330
µ
F, 4 V/220
µ
F, 6.3 V/150
µ
F, 10 V/100
µ
F products
in D2 case.
2.5 V/470
µ
F, 4 V/330
µ
F, 6.3 V/220
µ
F, 10 V/150
µ
F, 16V/100
µ
F products in D case.
2. Product of capacitance in
µ
F and voltage in V.
3. Capacitance change of ± 12% applies to
2.5 V/4.7
µ
F to 22
µ
F, 4 V/4.7
µ
F to 22
µ
F, 6.3 V/3.3
µ
F to 15
µ
F, 10 V/2.2
µ
F to 10
µ
F, 16 V/1.5
µ
F, 2.2
µ
F, 20 V/1
µ
F, 1.5
µ
F products in A2 case;
2.5 V/15
µ
F to 47
µ
F, 4 V/10
µ
F to 47
µ
F, 6.3 V/6.8
µ
F to 33
µ
F, 10 V/4.7
µ
F to 10
µ
F, 16 V/3.3
µ
F to 6.8
µ
F, 20 V/2.2
µ
F
to 4.7
µ
F, 25 V/1.5
µ
F, 2.2
µ
F, 35 V/1
µ
F, 1.5
µ
F products in
A case;
2.5 V/33
µ
F to 150
µ
F, 4 V/100
µ
F, 6.3 V/68
µ
F, 100
µ
F, 10 V/
4.7
µ
F products in B2 case;
L
ZZ
W
1
W
1
W
1
L
L
W
2
Z
Z
[A2, A cases] [B3, B2 cases] [B, C, D, and D2 cases]
ZZ
B2
only
W
2
W
2
H
H
H
Y
TANTALUM CAPACITORS
DC Rated
Voltage
(Vdc)
(Unit: mm)
6SELECTION GUIDE EC0171EJSV0SG00
1 F 10 V
Capacitance code in pF
Capacitance in F
DC rated voltage
Polarity
Production date code
DC rated voltage
Polarity
DC rated voltage
Polarity
[A2, A cases]
[B3, B2, and D2 cases] [B case]
e
G
J
A
C
D
E
V
H
: 2.5 V
: 4 V
: 6.3 V
: 10 V
: 16 V
: 20 V
: 25 V
: 35 V
: 50 V
A105
10
6
10
4R
µ
10 F 4 V
µ
10 F 6.3 V
µ
µ
Capacitance in F
µ
2.5 V/220
µ
F, 470
µ
F, 4 V/150
µ
F to 330
µ
F, 6.3 V/100
µ
F, 10 V/
68
µ
F, 16 V/47
µ
F products in C case;
2.5 V/330
µ
F, 4 V/220
µ
F, 6.3 V/150
µ
F, 10 V/100
µ
F products
in D2 case;
2.5 V/470
µ
F, 4 V/330
µ
F, 470
µ
F, 6.3 V/220
µ
F, 330
µ
F, 10 V/
150
µ
F, 220
µ
F,16 V/100
µ
F products in D case.
Capacitance change of ±15% applies to all products with the
B3 case.
See pages 21 and 22 f or taping specifications.
(R SERIES EXTENDED C-V VALUE REFERENCE BY CASE CODE)
DC Rated
Voltage
2.5 4 6.3 10 16 20 25 35
µ
F
0.47 A2 A
0.68 A2 A2 A A
1.0 A2 A2 A2, A A A
1.5 A2 A2 A2 A2, A A A,B2,B
2.2 A2 A2 A2 A2, A A A, B2 B2, B
3.3 A2 A2 A2, A A A, B2 B2, B B2
4.7 A2 A2 A2, A A2, A A, B2 A,B2,B B2 C
6.8 A2 A2, A A2, A A, B2
A,B3,B2,B
B2 C C
10 A2 A2, A
A2,A,B2
A2,A,B3,B2,B
A,B3,B2
B2, C C D2, D
15 A2, A
A2,A,B2
A2,A,B3,B2,B
B3,B2 B2, C C D2, D D
22 A2, A
A2,A,B3,B2,B
A,B3,B2 B3,B2,C
B2,C C,D2,D D
33
A,B3,B2 A,B3,B2
A,B3,B2,C
B2, C C,D2,D D2, D
47
A,B3,B2
A,B3,B2,C
B3,B2,C
B2,C,D2,D
C,D2,D D
68
A,B3,B2 B3,B2,C
B2,C,D2,D
C,D2,D D
100 B3, B2
B2,C,D2,D B2,C,D2,D
C,D2,D D
150 B2 C,D2,D C,D2,D D
220 B2, C C,D2,D C, D D
330 D2 C, D D
470 C, D D
MARKINGS
The standard marking shows capacitance, DC rated voltage, and polarity.
[Marking of production date code]
M
YJan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1999 a b c d e f g h j k l m
2000 n p q r s t u v w x y z
2001 A B C D E F G H J K L M
2002 N P Q R S T U V W X Y Z
Note: Production date code will repeat beginning in 2003.
7SELECTION GUIDE EC0171EJSV0SG00
PART NUMBER SYSTEM
Bulk
Tape and Reel
NR A 475 M 04 R 8
Tape width (8 mm: U, A, W, S; 12 mm: B, C, T, D)
Tape and Reel
Tape Polarity mark
Feed direction
R: Reel diameter 180 mm (7.09 inch)
Orientation
Tape Polarity mark
Feed direction
P: Reel diameter 330 mm (13 inch)
Orientation
R Series
NR A 475 M 04
DC rated voltage in volts
Capacitance tolerance
Capacitance (pF)
First two digits represent significant figures. Third digit specifies number of zeros to follow.
M
K: ±20%
: ±10%
Case code
NEC R Series
U
A
W
S
B
C
T
D
: A2 case
: A case
: B3 case
: B2 case
: B case
: C case
: D2 case
: D case
[Marking of production date code]
M
YJan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1999 a b c d e f g h j k l m
2000 n p q r s t u v w x y z
2001 A B C D E F G H J K L M
2002 N P Q R S T U V W X Y Z
Note: Production date code will repeat beginning in 2003.
Capacitance in F
Production date code
DC rated voltage
[C, D cases]
10
6R
10 F 6.3 V
µ
Polarity
µ
8SELECTION GUIDE EC0171EJSV0SG00
STANDARD RATINGS
Part Capacitance Case Tangent of
Number (
µ
F) Code Loss Angle
50 V Rating
NRS474M50 0.47 B2 0.5 0.04
NRC684M50 0.68 C 0.5 0.04
NRC105M50 1 C 0.5 0.04
NRC155M50 1.5 C 0.7 0.04
NRD225M50 2.2 D 1.1 0.04
NRD335M50 3.3 D 1.6 0.04
NRT335M50 3.3 D2 1.6 0.04
NRD475M50 4.7 D 2.3 0.04
35 V Rating
NRS474M35 0.47 B2 0.5 0.04
NRB474M35 0.47 B 0.5 0.04
NRS684M35 0.68 B2 0.5 0.04
NRB684M35 0.68 B 0.5 0.04
NRS105M35 1 B2 0.5 0.04
NRB105M35 1 B 0.5 0.04
NRC155M35 1.5 C 0.5 0.04
NRC225M35 2.2 C 0.7 0.04
NRC335M35 3.3 C 1.2 0.04
NRD335M35 3.3 D 1.2 0.04
NRT475M35 4.7 D2 1.6 0.04
NRD475M35 4.7 D 1.6 0.04
NRT685M35 6.8 D2 2.3 0.06
NRD685M35 6.8 D 2.3 0.06
25 V Rating
NRA474M25 0.47 A 0.5 0.04
NRS155M25 1.5 B2 0.5 0.04
NRB155M25 1.5 B 0.5 0.04
NRC335M25 3.3 C 0.8 0.04
NRC475M25 4.7 C 1.1 0.04
NRT685M25 6.8 D2 1.7 0.06
NRD685M25 6.8 D 1.7 0.06
NRT106M25 10 D2 2.5 0.06
NRD106M25 10 D 2.5 0.06
20 V Rating
NRA684M20 0.68 A 0.5 0.04
NRS225M20 2.2 B2 0.5 0.04
NRB225M20 2.2 B 0.5 0.04
NRC475M20 4.7 C 0.9 0.04
NRC685M20 6.8 C 1.4 0.06
NRT106M20 10 D2 2.0 0.06
NRD106M20 10 D 2.0 0.06
NRT156M20 15 D2 3.0 0.06
NRD156M20 15 D 3.0 0.06
Notes:
(1) Part numbers are for ±20% capacitance tolerance. For ±10%
units, change the letter from M to K.
(2) Use the letters S, and T as the case code in the par t number
for B2 and D2.
Part Capacitance Case Tangent of
Number (
µ
F) Code Loss Angle
16 V Rating
NRA105M16 1 A 0.5 0.04
NRA155M16 1.5 A 0.5 0.04
NRS335M16 3.3 B2 0.5 0.04
NRB335M16 3.3 B 0.5 0.04
NRC685M16 6.8 C 1.0 0.06
NRC106M16 10 C 1.6 0.06
NRT156M16 15 D2 2.4 0.06
NRD156M16 15 D 2.4 0.06
NRT226M16 22 D2 3.5 0.06
NRD226M16 22 D 3.5 0.06
10 V Rating
NRA155M10 1.5 A 0.5 0.04
NRA225M10 2.2 A 0.5 0.04
NRS475M10 4.7 B2 0.5 0.04
NRB475M10 4.7 B 0.5 0.04
NRC106M10 10 C 1.0 0.06
NRC156M10 15 C 1.5 0.06
NRT226M10 22 D2 2.2 0.06
NRD226M10 22 D 2.2 0.06
NRT336M10 33 D2 3.3 0.06
NRD336M10 33 D 3.3 0.06
6.3 V Rating
NRA225M06 2.2 A 0.5 0.04
NRA335M06 3.3 A 0.5 0.04
NRS685M06 6.8 B2 0.5 0.06
NRB685M06 6.8 B 0.5 0.06
NRC156M06 15 C 0.9 0.06
NRC226M06 22 C 1.4 0.06
NRT336M06 33 D2 2.0 0.06
NRD336M06 33 D 2.0 0.06
NRT476M06 47 D2 3.0 0.06
NRD476M06 47 D 3.0 0.06
4 V Rating
NRA335M04 3.3 A 0.5 0.04
NRA475M04 4.7 A 0.5 0.04
NRS106M04 10 B2 0.5 0.06
NRB106M04 10 B 0.5 0.06
NRC226M04 22 C 0.8 0.06
NRC336M04 33 C 1.3 0.06
NRT476M04 47 D2 1.9 0.06
NRD476M04 47 D 1.9 0.06
NRT686M04 68 D2 2.7 0.06
NRD686M04 68 D 2.7 0.06
DC Leakage
Current
(
µ
A)
DC Leakage
Current
(
µ
A)
9SELECTION GUIDE EC0171EJSV0SG00
EXTENDED CHIPS STANDARD RATINGS
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
35 V Rating
NRA474M35 0.47 A 0.5 0.06
NRA684M35 0.68 A 0.5 0.06
NRA105M35 1 A 0.5 0.06
NRA155M35 1.5 A 0.5 0.06
NRS155M35 1.5 B2 0.5 0.06
NRB155M35 1.5 B 0.5 0.06
NRS225M35 2.2 B2 0.7 0.06
NRB225M35 2.2 B 0.7 0.06
NRS335M35 3.3 B2 1.1 0.06
NRC475M35 4.7 C 1.6 0.06
NRC685M35 6.8 C 2.3 0.06
NRT106M35 10 D2 3.5 0.06
NRD106M35 10 D 3.5 0.06
NRD156M35 15 D 5.2 0.06
25 V Rating
NRA684M25 0.68 A 0.5 0.06
NRA105M25 1 A 0.5 0.06
NRA155M25 1.5 A 0.5 0.06
NRA225M25 2.2 A 0.5 0.06
NRS225M25 2.2 B2 0.5 0.06
NRS335M25 3.3 B2 0.8 0.06
NRB335M25 3.3 B 0.8 0.06
NRS475M25 4.7 B2 1.1 0.06
NRC685M25 6.8 C 1.7 0.06
NRC106M25 10 C 2.5 0.06
NRT156M25 15 D2 3.7 0.06
NRD156M25 15 D 3.7 0.06
NRD226M25 22 D 5.5 0.06
20 V Rating
NRU474M20 0.47 A2 0.5 0.06
NRU684M20 0.68 A2 0.5 0.06
NRU105M20 1 A2 0.5 0.06
NRA105M20 1 A 0.5 0.06
NRU155M20 1.5 A2 0.5 0.06
NRA155M20 1.5 A 0.5 0.06
NRA225M20 2.2 A 0.5 0.06
NRA335M20 3.3 A 0.6 0.06
NRS335M20 3.3 B2 0.6 0.06
NRA475M20 4.7 A 0.9 0.06
NRS475M20 4.7 B2 0.9 0.06
NRB475M20 4.7 B 0.9 0.06
NRS685M20 6.8 B2 1.4 0.06
NRS106M20 10 B2 2.0 0.06
NRC106M20 10 C 2.0 0.06
NRC156M20 15 C 3.0 0.06
NRC226M20 22 C 4.4 0.06
NRT226M20 22 D2 4.4 0.06
NRD226M20 22 D 4.4 0.06
NRT336M20 33 D2 6.6 0.06
NRD336M20 33 D 6.6 0.06
NRD476M20 47 D 9.4 0.06
Notes:
(1) Par t numbers are for ±20% capacitance tolerance. For ±10%
units, change the letter from M to K.
(2) Use the letters U, S, and T as the case code in the par t number
for A2, B2, and D2.
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
16 V Rating
NRU684M16 0.68 A2 0.5 0.06
NRU105M16 1 A2 0.5 0.06
NRU155M16 1.5 A2 0.5 0.06
NRU225M16 2.2 A2 0.5 0.06
NRA225M16 2.2 A 0.5 0.06
NRA335M16 3.3 A 0.5 0.06
NRA475M16 4.7 A 0.7 0.06
NRS475M16 4.7 B2 0.7 0.06
NRA685M16 6.8 A 1.0 0.06
NRW685M16 6.8 B3 1.0 0.06
NRS685M16 6.8 B2 1.0 0.06
NRB685M16 6.8 B 1.0 0.06
NRA106M16 10 A 1.6 0.08
NRW106M16 10 B3 1.6 0.08
NRS106M16 10 B2 1.6 0.06
NRS156M16 15 B2 2.4 0.06
NRC156M16 15 C 2.4 0.06
NRS226M16 22 B2 3.5 0.06
NRC226M16 22 C 3.5 0.06
NRC336M16 33 C 5.2 0.06
NRT336M16 33 D2 5.2 0.06
NRD336M16 33 D 5.2 0.06
NRC476M16 47 C 7.5 0.06
NRT476M16 47 D2 7.5 0.06
NRD476M16 47 D 7.5 0.06
NRD686M16 68 D 10.8 0.06
NRD107M16 100 D 16 0.10
10 V Rating
NRU105M10 1 A2 0.5 0.08
NRU155M10 1.5 A2 0.5 0.08
NRU225M10 2.2 A2 0.5 0.08
NRU335M10 3.3 A2 0.5 0.08
NRA335M10 3.3 A 0.5 0.08
NRU475M10 4.7 A2 0.5 0.08
NRA475M10 4.7 A 0.5 0.08
NRA685M10 6.8 A 0.6 0.08
NRS685M10 6.8 B2 0.6 0.08
NRU106M10 10 A2 1.0 0.08
NRA106M10 10 A 1.0 0.08
NRW106M10 10 B3 1.0 0.08
NRS106M10 10 B2 1.0 0.08
NRB106M10 10 B 1.0 0.08
NRW156M10 15 B3 1.5 0.06
NRS156M10 15 B2 1.5 0.08
NRW226M10 22 B3 2.2 0.12
NRS226M10 22 B2 2.2 0.08
NRC226M10 22 C 2.2 0.08
NRS336M10 33 B2 3.3 0.08
NRC336M10 33 C 3.3 0.08
NRS476M10 47 B2 4.7 0.08
NRC476M10 47 C 4.7 0.08
NRT476M10 47 D2 4.7 0.08
NRD476M10 47 D 4.7 0.08
NRC686M10 68 C 6.8 0.08
NRT686M10 68 D2 6.8 0.08
NRD686M10 68 D 6.8 0.08
NRT107M10 100 D2 10 0.10
NRD107M10 100 D 10 0.08
NRD157M10 150 D 15 0.10
NRD227M10 220 D 22 0.12
R Series
10 SELECTION GUIDE EC0171EJSV0SG00
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
6.3 V Rating
NRU155M06 1.5 A2 0.5 0.08
NRU225M06 2.2 A2 0.5 0.08
NRU335M06 3.3 A2 0.5 0.08
NRU475M06 4.7 A2 0.5 0.08
NRA475M06 4.7 A 0.5 0.08
NRU155M06 1.5 A2 0.5 0.08
NRU225M06 2.2 A2 0.5 0.08
NRU335M06 3.3 A2 0.5 0.08
NRU475M06 4.7 A2 0.5 0.08
NRA475M06 4.7 A 0.5 0.08
NRU685M06 6.8 A2 0.5 0.08
NRA685M06 6.8 A 0.5 0.08
NRU106M06 10 A2 0.6 0.08
NRA106M06 10 A 0.6 0.08
NRS106M06 10 B2 0.6 0.08
NRU156M06 15 A2 0.9 0.12
NRA156M06 15 A 0.9 0.08
NRW156M06 15 B3 0.9 0.08
NRS156M06 15 B2 0.9 0.08
NRB156M06 15 B 0.9 0.08
NRA226M06 22 A 1.4 0.10
NRW226M06 22 B3 1.3 0.12
NRS226M06 22 B2 1.3 0.08
NRA336M06 33 A 2.0 0.12
NRW336M06 33 B3 2.0 0.20
NRS336M06 33 B2 2.0 0.08
NRC336M06 33 C 2.0 0.08
NRW476M06 47 B3 2.9 0.12
NRS476M06 47 B2 3.0 0.08
NRC476M06 47 C 3.0 0.08
NRS686M06 68 B2 4.2 0.10
NRC686M06 68 C 4.2 0.08
NRT686M06 68 D2 4.2 0.08
NRD686M06 68 D 4.2 0.08
NRS107M06 100 B2 6.3 0.12
NRC107M06 100 C 6.3 0.08
NRT107M06 100 D2 6.3 0.08
NRD107M06 100 D 6.3 0.08
NRC157M06 150 C 9.4 0.10
NRT157M06 150 D2 9.4 0.10
NRD157M06 150 D 9.4 0.08
NRC227M06 220 C 13.8 0.14
NRD227M06 220 D 13.8 0.12
NRD337M06 330 D 20.7 0.14
4 V Rating
NRU225M04 2.2 A2 0.5 0.08
NRU335M04 3.3 A2 0.5 0.08
NRU475M04 4.7 A2 0.5 0.08
NRU685M04 6.8 A2 0.5 0.08
NRA685M04 6.8 A 0.5 0.08
NRU106M04 10 A2 0.5 0.12
NRA106M04 10 A 0.5 0.08
NRU156M04 15 A2 0.6 0.12
NRA156M04 15 A 0.6 0.08
NRS156M04 15 B2 0.6 0.08
NRU226M04 22 A2 0.8 0.12
NRA226M04 22 A 0.8 0.06
NRW226M04 22 B3 0.8 0.08
NRS226M04 22 B2 0.8 0.08
NRB226M04 22 B 0.8 0.08
NRA336M04 33 A 1.3 0.10
NRW336M04 33 B3 1.3 0.12
NRS336M04 33 B2 1.3 0.08
NRA476M04 47 A 1.8 0.12
NRW476M04 47 B3 1.8 0.12
NRS476M04 47 B2 1.8 0.08
NRC476M04 47 C 1.8 0.08
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
4 V Rating
NRW686M04 68 B3 2.7 0.15
NRS686M04 68 B2 2.7 0.08
NRC686M04 68 C 2.7 0.08
NRS107M04 100 B2 4.0 0.12
NRC107M04 100 C 4.0 0.08
NRT107M04 100 D2 4.0 0.08
NRD107M04 100 D 4.0 0.08
NRS157M04 150 B2 6.0 0.18
NRC157M04 150 C 6.0 0.10
NRT157M04 150 D2 6.0 0.08
NRD157M04 150 D 6.0 0.08
NRC227M04 220 C 8.8 0.12
NRT227M04 220 D2 8.8 0.12
NRD227M04 220 D 8.8 0.08
NRD337M04 330 D 13.2 0.14
NRD477M04 470 D 18.8 0.16
2.5 V Rating
NRU475M02 4.7 A2 0.5 0.08
NRU685M02 6.8 A2 0.5 0.08
NRU106M02 10 A2 0.5 0.08
NRU156M02 15 A2 0.5 0.12
NRA156M02 15 A 0.5 0.08
NRU226M02 22 A2 0.5 0.12
NRA226M02 22 A 0.5 0.08
NRA336M02 33 A 0.8 0.08
NRW336M02 33 B3 0.8 0.08
NRS336M02 33 B2 0.8 0.08
NRA476M02 47 A 1.1 0.12
NRW476M02 47 B3 1.1 0.12
NRS476M02 47 B2 1.1 0.08
NRA686M02 68 A 1.7 0.18
NRW686M02 68 B3 1.7 0.20
NRS686M02 68 B2 1.7 0.08
NRW107M02 100 B3 2.5 0.18
NRS107M02 100 B2 2.5 0.08
NRS157M02 150 B2 3.7 0.16
NRS227M02 220 B2 5.5 0.18
NRC227M02 220 C 5.5 0.12
NRT337M02 330 D2 8.2 0.14
NRC477M02 470 C 11.7 0.18
NRD477M02 470 D 11.7 0.14
11SELECTION GUIDE EC0171EJSV0SG00
SV/S Series Tantalum Chip Capacitors
DIMENSIONS [mm] PERFORMANCE CHARACTERISTICS
Operating temperature range
55 to +125°C with proper voltage
derating as shown in the following table.
DC working voltage and surge voltage
Rated voltage 2.5 4 6.3 10 16 V
at 85°C 2.5 4 6.3 10 16 V
Working at 125°C 1.6 2.5 4 6.3 10 V
Surge at 85°C 3.3 5.2 8 13 20 V
Capacitance (at 20°C, 120 Hz)
Range: 0.47
µ
F to 33
µ
F
Tolerance: ±20%
Capacitance change with temperature
Not to exceed 20% at 55°C,
+20% at 85°C, and +20% at 125°C
Tangent of loss angle (at 20°C, 120 Hz)
Refer to Standard Ratings
DC leakage current (at 20°C)
0.01 CVNote
µ
A or 0.5
µ
A, whichever is
greater
Damp heat (90 to 95% RH at 40°C, 56 days (1344 h))
Capacitance change: ±20%
Tangent of loss angle: 150% of initial
requirements
DC leakage current: initial requirements
Endurance (at 85°C, DC rated v oltage, 2000 h)
Capacitance change: ±20%
Tangent of loss angle: initial requirements
DC leakage current: 200% of
initial requirements
Resistance to soldering heat
Full immersion in solder, 260°C for 5 s.
Capacitance change: ±20%
Leakage current: initial requirements
Tangent of loss angle: initial requirements
See pages 21 and 22 f or taping specifications.
Note: Product of capacitance in
µ
F and voltage in V.
SV/S Series
(Ultra-miniaturized)
2.5 4 6.3 10 16
µ
F0.47 P
0.68 P P
1 PPP
1.5 P P P
2.2 PPPP
3.3 PPPP
4.7 P J, P J, P P
6.8 P J, P P
10 J, P P P
15 P P
22 P P
33 P
DC Rated
Voltage
(Vdc)
Case
Code LW1W2HZ
J 1.6 ± 0.1 0.8 ± 0.1 0.6 ± 0.1 0.8 ± 0.1 0.4 ± 0.15
P 2.0 ± 0.2 1.25 ± 0.2 0.9 ± 0.2 1.1 ± 0.1 0.5 ± 0.2
W1L
JA
Z
+
W2
[J, P cases]
Z
H
C-V VALUE REFERENCE BY CASE CODE
Marking detail
[J case]
J case Marking of production date code
J
DC rated voltage
e : 2.5 V
G : 4 V
J : 6.3 V
Production data code
Feb.Jun.
Jun. Feb.
Mar.
Mar.
Apr.
Apr.
May
May
Jun.
Jun.
Jul.
Jul.
Aug.
Aug.
Sep.
Sep.
Oct.
Oct.
Nov.
Nov.
Dec.
Dec.
2000
2001
Note: Production date code will repeat beginning in 2002
12 SELECTION GUIDE EC0171EJSV0SG00
STANDARD RATINGS
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
16 V Rating
SVSP1C474M 0.47 P 0.5 0.1
SVSP1C684M 0.68 P 0.5 0.1
SVSP1C105M 1.0 P 0.5 0.2
10 V Rating
SVSP1A684M 0.68 P 0.5 0.1
SVSP1A105M 1 P 0.5 0.1
SVSP1A155M 1.5 P 0.5 0.2
SVSP1A225M 2.2 P 0.5 0.2
SVSP1A335M 3.3 P 0.5 0.2
SVSP1A475M 4.7 P 0.5 0.2
6.3 V Rating
SVSP0J105M 1 P 0.5 0.1
SVSP0J155M 1.5 P 0.5 0.1
SVSP0J225M 2.2 P 0.5 0.2
SVSP0J335M 3.3 P 0.5 0.2
SVSJ0J475M 4.7 J 0.5 0.2
SVSP0J475M 4.7 P 0.5 0.2
SVSP0J685M 6.8 P 0.5 0.2
SVSP0J106M 10 P 0.6 0.2
PART NUMBER SYSTEM
Bulk Tape and Reel
Capacitance tolerance ±20%
Tape and reel
Tape width 8 mm
Packing orientation
R: Cathode on the side of sprocket hole
Rated voltage
Case code
Part number of bulk
(see left)
SVS Series
0E: 2.5 V; 0G: 4 V; 0J: 6.3 V
1A: 10 V; 1C: 16 V
Capacitance in pF
First two digits represent significant
figures. Third digit specifies number
of zeros to follow.
SVS P OJ 106 M TE SVSP0J106M 8 R
Marking detail
[P case]
J A
J A
Polarity
up to 6.8 F
over 10 F
µ
µ
Marking code
(corresponding to rated
voltage and capacitance)
Polarity
Marking code
(corresponding to rated
voltage and capacitance)
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
4 V Rating
SVSP0G155M 1.5 P 0.5 0.1
SVSP0G225M 2.2 P 0.5 0.1
SVSP0G335M 3.3 P 0.5 0.2
SVSJ0G475M 4.7 J 0.5 0.2
SVSP0G475M 4.7 P 0.5 0.2
SVSJ0G685M 6.8 J 0.5 0.2
SVSP0G685M 6.8 P 0.5 0.2
SVSP0G106M 10 P 0.5 0.2
SVSP0G156M 15 P 0.5 0.2
SVSP0G226M 22 P 0.8 0.2
2.5 V Rating
SVSP0E225M 2.2 P 0.5 0.1
SVSP0E335M 3.3 P 0.5 0.1
SVSP0E475M 4.7 P 0.5 0.2
SVSP0E685M 6.8 P 0.5 0.2
SVSJ0E106M 10 J 0.5 0.2
SVSP0E106M 10 P 0.5 0.2
SVSP0E156M 15 P 0.5 0.2
SVSP0E226M 22 P 0.5 0.2
SVSP0E336M 33 P 0.8 0.2
2.5 4 6.3 10 16
µ
F0.47 CS
0.68 AW CW
1JAAACA
1.5 GE JE AE
2.2 eJ GJ JJ AJ
3.3 eN GN JN AN
4.7 eS GS JS AS
6.8 eW GW JW
10 eA GA JA
15 eE GE
22 eJ GJ
33 eN
DC Rated
Voltage
(Vdc)
PRODUCT LINE-UP AND MARKING CODE
[P case]
13SELECTION GUIDE EC0171EJSV0SG00
SV/H Series Tantalum Chip Capacitors
(Higher Performance)
DIMENSIONS [mm]
Case
Code LW1W2HZY
A 3.2 ± 0.2 1.6 ± 0.2 1.2 ± 0.1 1.6 ± 0.2 0.8 ± 0.2
B2 3.5 ± 0.2 2.8 ± 0.2 2.3 ± 0.1 1.9 ± 0.2 0.8 ± 0.2
C 6.0 ± 0.2 3.2 ± 0.2 2.2 ± 0.1 2.5 ± 0.2 1.3 ± 0.2 0.4 C
D2 5.8 ± 0.2 4.6 ± 0.2 2.4 ± 0.1 3.2 ± 0.2 1.3 ± 0.2
10 16 20 25 35
µ
F
0.47 A B2
0.68 A B2
1A B2
1.5 A B2 C
2.2 A B2 C
3.3 B2 C
4.7 B2 C D2
6.8 C D2
10 C D2
15 C D2
22 D2
33 D2
PERFORMANCE CHARACTERISTICS
Operating temperature range
55 to +125°C with proper voltage
derating as shown in the following table.
DC working voltage and surge voltage
Rated voltage 10 16 20 25 35 V
at 85°C1016202535V
Working at 125°C 6.3 10 13 16 22 V
Surge at 85°C1320263346V
Capacitance (at 20°C, 120 Hz)
Range: 0.47
µ
F to 33
µ
F
Tolerance: ±20%, ±10%
Capacitance change with temperature
Not to exceed 12% at 55°C, +12%
at 85°C, and +15% at 125°C
Tangent of loss angle (at 20°C, 120 Hz)
0.47
µ
F to 4.7
µ
F: less than 0.04
6.8
µ
F to 33
µ
F: less than 0.06
DC leakage current (at 20°C)
0.01 CVNote
µ
A or 0.5
µ
A, whiche v er is g reater
Damp heat (85% RH at 85°C, 56 days (1344 h))
Capacitance change: ±10%
Tangent of loss angle: 150% of
initial requirements
DC leakage current: initial requirements
Endurance (at 85°C, DC rated v oltage, 2000 h)
Capacitance change: ±10%
Tangent of loss angle: initial requirements
DC leakage current: 125% of
initial requirements
Resistance to soldering heat
(solder reflow and solder dip at 260°C, 10 s.)
Capacitance change: ± 5%
Tangent of loss angle: initial requirements
DC leakage current: initial requirements
Rapid change of temperature (at 55 to 125°C,
1000 cycles)
Capacitance change: ± 10%
Leakage current: initial requirements
Tangent of loss angleL initial requirements
Note: Product of capacitance in
µ
F and voltage in V.
See pages 21 and 22 for taping specifications.
L
ZZ
W
1
W
1
W
1
L
L
W
2
Z
Z
[A cases] [B2 cases] [C, D2 cases]
ZZ
W
2
W
2
H
H
Y
H
(Unit: mm)
SV/H Series
DC rated
voltage
(Vdc)
14 SELECTION GUIDE EC0171EJSV0SG00
[Marking of production date code]
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1999 a b c d e f g h j k l m
2000 n p q r s t u v w x y z
2001 A B C D E F G H J K L M
2002 N P Q R S T U V W X Y Z
Note: Production date code will repeat beginning in 2003.
PART NUMBER SYSTEM
Bulk Tape and reel
MARKINGS
The standard marking shows capacitance, DC rated voltage, polarity, and production date code.
Top face
Bottom face
[A case]
1 F 16 V
Capacitance code in pF
Capacitance in F
Production date code
DC rated voltage
Polarity
Production date code
DC rated voltage
DC rated voltage
Polarity
[A cases] [B2, D2 cases] [C cases]
A
C
D
E
V
: 10V
: 16V
: 20V
: 25V
: 35V
C105
10
16R
10
35R
µ
10 F 35 V
µ
10 F 16 V
µ
µ
Polarity
Capacitance in F
µ
U
Production date code
Capacitance tolerance
(M: ± 20%; K: ± 10%)
Capacitance in pF code
DC rated voltage
Case code
See Bulk Packing orientation
Tape and reel Tape width
8 mm for A and B2 cases
12 mm for C and D2 cases
SVH Series
1V
1E
1D
1C
1A
: 35 V
: 25 V
: 20 V
: 16 V
: 10 V
First two digits represent significant figures.
Third digit specifies number of zeros to follow.
SVH B2 1V 105 M TE SVH B2 1V 105 M 8 R
Tape Polarity mark
Feed direction
R: Orientation
15SELECTION GUIDE EC0171EJSV0SG00
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
35 V Rating
SVHB21V474M 0.47 B2 0.5 0.04
SVHB21V684M 0.68 B2 0.5 0.04
SVHB21V105M 1 B2 0.5 0.04
SVHC1V155M 1.5 C 0.5 0.04
SVHC1V225M 2.2 C 0.7 0.04
SVHC1V335M 3.3 C 1.2 0.04
SVHD21V475M 4.7 D2 1.6 0.04
SVHD21V685M 6.8 D2 2.3 0.06
25 V Rating
SVHA1E474M 0.47 A 0.5 0.04
SVHB21E155M 1.5 B2 0.5 0.04
SVHC1E475M 4.7 C 1.1 0.04
SVHD21E106M 10 D2 2.5 0.06
20 V Rating
SVHA1D684M 0.68 A 0.5 0.04
SVHB21D225M 2.2 B2 0.5 0.04
SVHC1D685M 6.8 C 1.4 0.06
SVHD21D156M 15 D2 3.0 0.06
16 V Rating
SVHA1C105M 1 A 0.5 0.04
SVHA1C155M 1.5 A 0.5 0.04
SVHB21C335M 3.3 B2 0.5 0.04
SVHC1C106M 10 C 1.6 006
SVHD21C226M 22 D2 3.5 0.06
10 V Rating
SVHA1A225M 2.2 A 0.5 0.04
SVHB21A475M 4.7 B2 0.5 0.04
SVHC1A156M 15 B 1.5 0.06
SVHD21A336M 33 D2 3.3 0.06
Note: Part numbers are for ±20% capacitance tolerance. For ±10%
units, change the letter from M to K.
STANDARD RATINGS
SV/H Series
16 SELECTION GUIDE EC0171EJSV0SG00
SV/F Series Tantalum Chip Capacitors
(Fuse Built-in Type)
DIMENSIONS [mm]
Case
Code LW1W2HZY
B2 3.5 ± 0.2 2.8 ± 0.2 2.3 ± 0.1 1.9 ± 0.2 0.8 ± 0.2
C 6.0 ± 0.2 3.2 ± 0.2 2.2 ± 0.1 2.5 ± 0.2 1.3 ± 0.2 0.4 C
D2 5.8 ± 0.2 4.6 ± 0.2 2.4 ± 0.1 3.2 ± 0.2 1.3 ± 0.2
D 7.3 ± 0.2 4.3 ± 0.2 2.4 ± 0.1 2.8 ± 0.2 1.3 ± 0.2 0.5 C
10 16 20 25 35 50
µ
F
1B2C
1.5 B2
2.2 B2 C
3.3 B2 C D2
4.7 B2 C C D2, D
6.8 C D2, D D
10 C D2, D D
15 C, D2 D2, D D
22 D2, D D
33 D2, D D
47 D
PERFORMANCE CHARACTERISTICS
Operating temperature range
55 to +125°C with proper voltage
derating as shown in the following table.
DC working voltage and surge voltage
Rated voltage 10 16 20 25 35 50 V
at 85°C101620253550V
Working at 125°C 6.3 10 13 16 22 32 V
Surge at 85°C132026334665V
Capacitance (at 20°C, 120 Hz)
Range: 1
µ
F to 47
µ
F
Tolerance: ± 20%, ±10%
Capacitance change with temperature
Not to exceed 12% at 55°C, +12% at
85°C, and +15% at 125°C
Tangent of loss angle (at 20°C, 120 Hz)
1
µ
F to 4.7
µ
F: less than 0.04
6.8
µ
F to 47
µ
F: less than 0.06
DC leakage current (at 20°C)
0.01 CVNote
µ
A or 0.5
µ
A, whichever is greater
Damp heat (90 to 95% RH at 40°C , 56 da ys (1344 h))
Capacitance change: ±5%
Tangent of loss angle: 150% of
initial requirements
DC leakage current: initial requirements
Endurance (at 85°C , DC r ated voltage, 2000 h)
Capacitance change: ±10%
Tangent of loss angle: initial requirements
DC leakage current: 125% of
initial requirements
Resistance to soldering heat
(solder reflow at 260°C, 10 s.
or solder dip at 260°C, 5 s.)
Capacitance change: ±5%
Leakage current: initial requirements
Tangent of loss angle: initial requirements
Fuse blow-out characteristic
Blow-out time:
B2 case: 5 s Max. with 2 A applied
C case: 10 s Max. with 2 A applied
D2, D cases: 20 s Max. with 2 A applied
Note: Product of capacitance in
µ
F and voltage in V.
See pages 21 and 22 for taping specifications.
LW
1
W
1
W
2
ZZ
L
.
F1
35R .
F15
10R
.F
4.7
16R
H
H
Y
Z Z W
2
[C, D cases][B2 cases] [D2 cases]
(Unit: mm)
DC Rated
Voltage
(Vdc)
17SELECTION GUIDE EC0171EJSV0SG00
MARKINGS
The standard marking shows capacitance, DC rated voltage, polarity, and fuse built-in type.
PART NUMBER SYSTEM
Bulk
Tape and Reel
[Marking of production date code]
M
YJan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1999 a b c d e f g h j k l m
2000 n p q r s t u v w x y z
2001 A B C D E F G H J K L M
2002 N P Q R S T U V W X Y Z
Note: Production date code will repeat beginning in 2003.
.
F1
35R Capacitance in F
DC rated voltage
Production date
Anode and Fuse built-in type
.F
4.7
16R
[C, D cases][B2, D2 cases]
µ
Capacitance
tolerance
M for ±20%
K for ±10%
Capacitance code in pF
DC rated voltage
Case code
SV/F Series
1V
1E
1D
1C
1A
: 35 V
: 25 V
: 20 V
: 16 V
: 10 V
First two digits represent significant figures.
Third digit specifies number of zeros to follow.
SVF B2 1V 105 M
See above
Tape and reel
Tape width
8 mm for B2 case
12 mm for C, D, and D2 cases
Packing orientation
TE SVFB21V105M 8 R
Tape Polarity mark
Feed direction
R: Orientation
SV/F Series
18 SELECTION GUIDE EC0171EJSV0SG00
DC Leakage
Part Capacitance Case Current Tangent of
Number (
µ
F) Code (
µ
A) Loss Angle
50 V Rating
SVFC1H105M 1 C 0.5 0.04
SVFD21H335M 3.3 D2 1.7 0.04
35 V Rating
SVFB21V105M 1 B2 0.5 0.04
SVFC1V225M 2.2 C 0.7 0.04
SVFD21V475M 4.7 D2 1.6 0.04
SVFD1V475M 4.7 D 1.6 0.04
SVFD1V685M 6.8 D 2.5 0.06
25 V Rating
SVFB21E155M 1.5 B2 0.5 0.04
SVFC1E335M 3.3 C 0.8 0.04
SVFD21E685M 6.8 D2 1.7 0.06
SVFD1E685M 6.8 D 1.7 0.06
SVFD1E106M 10 D 2.5 0.06
20 V Rating
SVFB21D225M 2.2 B2 0.5 0.04
SVFC1D475M 4.7 C 0.9 0.04
SVFD21D106M 10 D2 2.0 0.06
SVFD1D106M 10 D 2.0 0.06
SVFD1D156M 15 D 3.0 0.06
SVFD1D226M 22 D 4.4 0.06
16 V Rating
SVFB21D335M 3.3 B2 0.5 0.04
SVFC1C475M 4.7 C 0.7 0.04
SVFC1C685M 6.8 C 1.0 0.06
SVFC1C106M 10 C 1.6 0.06
SVFD21C156M 15 D2 2.4 0.06
SVFD21C226M 22 D2 3.5 0.06
SVFD1C156M 15 D 2.4 0.06
SVFD1C226M 22 D 3.5 0.06
SVFD1C336M 33 D 5.3 0.06
10 V Rating
SVFB21A475M 4.7 B2 0.5 0.04
SVFC1A156M 15 C 1.5 0.06
SVFD21A156M 15 D2 1.5 0.06
SVFD21A336M 33 D2 3.3 0.06
SVFD1A336M 33 D 3.3 0.06
SVFD1A476M 47 D 4.7 0.06
Note: Par t numbers are for ±20% capacitance tolerance. For ±10%
units, change the letter from M to K.
STANDARD RATINGS
19SELECTION GUIDE EC0171EJSV0SG00
SV/Z Series Tantalum Chip Capacitors
(LowESR Type)
DIMENSIONS [mm]
Case
Code LW1W2HZY
B2 3.5 ± 0.2 2.8 ± 0.2 2.3 ± 0.1 1.9 ± 0.2 0.8 ± 0.2
C 6.0 ± 0.2 3.2 ± 0.2 2.2 ± 0.1 2.5 ± 0.2 1.3 ± 0.2 0.4 C
D 7.3 ± 0.2 4.3 ± 0.2 2.4 ± 0.1 2.8 ± 0.2 1.3 ± 0.2 0.5 C
4 6.3 10
µ
F
10 B2
15
22 B2 C
33 C
47 C
68
100 D
150 D D
220 D D
330 D
PERFORMANCE CHARACTERISTICS
Operating temperature range
55 to +125°C with proper voltage
derating as shown in the following table.
DC working voltage and surge voltage
Rated voltage 4 6.3 10 V
at 85°C 4 6.3 10 V
Working at 125°C 2.5 5 8 V
Surge at 85°C 5.2 8 13 V
Capacitance (at 20°C, 120 Hz)
Range: 10
µ
F to 330
µ
F
Tolerance: ± 20%
Capacitance change with temperature
Not to exceed 12% at 55°C, +12% at
85°C, and +15% at 125°C
Tangent of loss angle (at 20°C, 120 Hz)
Refer to Standard Ratings
DC leakage current (at 20°C)
0.01 CV(1)
µ
A or 0.5
µ
A, whiche ver is greater
Equiv alent series resistance (ESR)(at 20°C, 100 kHz)
Refer to Standard Ratings
Damp heat (90 to 95% RH at 40°C , 56 da ys (1344 h))
Capacitance change: ± 5% (±12%)(2)
Tangent of loss angle: 150% of initial
requirements
DC leakage current: initial requirements
Endurance (at 85°C, DC rated v oltage, 2000 h)
Capacitance change: ±10% (±12%)(2)
Tangent of loss angle: initial requirements
DC leakage current: 125% of
initial requirements
Resistance to soldering heat
(solder reflow at 260°C, 10 s. or
solder dip at 260°C, 5 s.)
Capacitance change: ±5% (±12%)(2)
Tangent of loss angle: initial requirements
DC leakage current: initial requirements
Note 1 Product of capacitance in
µ
F and voltage in V.
2 Capacitance change of ±12% applies to 10 V/150
µ
F,
6.3 V/220
µ
F, 4 V/330
µ
F products in D case.
See pages 21 and 22 for taping specifications.
L
ZZ
W1
W1
L
W2
Z
[B2 cases] [C, D cases]
Z
W2H
H
Y
SV/Z Series
DC Rated
Voltage
(Vdc)
20 SELECTION GUIDE EC0171EJSV0SG00
[Marking of production date code]
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1999 a b c d e f g h j k l m
2000 n p q r s t u v w x y z
2001 A B C D E F G H J K L M
2002 N P Q R S T U V W X Y Z
Note: Production date code will repeat beginning in 2003.
PART NUMBER SYSTEM
Bulk Tape and Reel
MARKINGS
The standard marking shows capacitance, DC rated voltage, polarity, and production date code.
DC Leakage
Part Capacitance Case Current Tangent of ESR
Number (
µ
F) Code (
µ
A) Loss Angle ()
10 V Rating
SVZB21A106M 10 B2 1.0 0.08 0.9
SVZC1A226M 22 C 2.2 0.08 0.5
SVZC1A336M 33 C 3.3 0.08 0.4
SVZC1A476M 47 C 4.7 0.08 0.3
SVZD1A107M 100 D 10.0 0.08 0.1
SVZD1A107M(C2) 100 D 10.0 0.08 0.12
SVZD1A157M 150 D 15.0 0.10 0.1
SVZD1A157M(C2) 150 D 15.0 0.10 0.12
6.3 V Rating
SVZB20J226M 22 B2 1.3 0.08 0.8
SVZD0J157M 150 D 9.4 0.08 0.1
SVZD0J157M(C2) 150 D 9.4 0.08 0.12
SVZD0J227M 220 D 13.8 0.12 0.1
SVZD0J227M(C2) 220 D 13.8 0.12 0.12
4 V Rating
SVZD0G227M 220 D 8.8 0.08 0.1
SVZD0G227M(C2) 220 D 8.8 0.08 0.12
SVZD0G337M 330 D 13.2 0.14 0.1
SVZD0G337M(C2) 330 D 13.2 0.14 0.12
STANDARD RATINGS
Capacitance in F
Production date code
DC rated voltage
Polarity
Production date code
DC rated voltage
[B2 cases] [C, D cases]
100
10E
10
10E
10 F 10 V
µ
100 F 10 V
µ
µ
µ
Polarity
Capacitance in F
Special code
(only D case with 0.12-ohm ESR)
Capacitance tolerance
(M: ±20%)
Capacitance in pF code
DC rated voltage
Case code
SV/Z Series
Tape and reel
See Bulk Packing orientation
Tape width
8 mm for B2 case
12 mm for C and D cases
0G
0J
1A
: 4 V
: 6.3 V
: 10 V
First two digits represent significant figures.
Third digit specifies number of zeros to follow.
SVZ D 1A 107 M (C2) TE SVZD1A107M(C2) 12 R
Tape Polarity mark
Feed direction
R: Orientation
21SELECTION GUIDE EC0171EJSV0SG00
TAPE AND REEL SPECIFICATIONS
PLASTIC T APE CARRIER
Case Code A0 ± 0.2 B0 ± 0.2 K ± 0.2
P 1.4 2.2 1.4
A2 1.9 3.5 1.4
A 1.9 3.5 1.9
B3 3.2 3.8 1.4
B2 3.3 3.8 2.1
B 3.1 5.1 2.6
C 3.7 6.4 3.0
D2 5.1 6.2 3.6
D 4.8 7.7 3.3
Case W ± 0.3 F ± 0.05 E ± 0.1 P1 ± 0.1 P2 ± 0.05 P0 ± 0.1 D0+0.1 tD1
Code 0
P, A2, A, B3, B2 8 3.5 40.2
φ
1.0
B0.3
C12 5.5 1.75 2 4
φ
1.5
φ
1.5
D2 8 0.4
D0.3
P
0
A
0
D
0
D
1
t
K
Sprocket hole Emboss
P
2
EF
B
0
W
P
1
Feed direction
Unit: mm
Tape and Reel Specification for Chips
22 SELECTION GUIDE EC0171EJSV0SG00
REEL
T ape Width A ± 2 N Min. C ± 0.5 D ± 0.5 B ± 0.5 W1W2 Max. R
8 mm
φ
180
φ
50
φ
13
φ
21 2 9.0 ± 0.3 11.4 ± 1.0 1
12 mm 13.0 ± 0.3 15.4 ± 1.0
8 mm
φ
330
φ
80
φ
13
φ
21 2 9.5 ± 0.5 14.5 Max. 1
12 mm 13.5 ± 0.5 18.5Max.
Case Code
φ
180 Reel
φ
330 Reel
P 3000
A2 (U) 3000 10,000
A 2000 9000
B3 (W) 3000
B2 (S) 2000 5000
B 1500 5000
C, D2 (Y), D 500 2500
[Quantity Per Reel]
B
D
R
W1
W2
C
N
A
Unit: mm
23SELECTION GUIDE EC0171EJSV0SG00
PS/L Series
PS/L Series NeoCapacitors
DIMENSIONS [mm]
Case
Code
EIA code
LW1W2HZY
P 2012 2.0 ± 0.2 1.25 ± 0.2 0.9 ± 0.1 1.1 ± 0.1 0.5 ± 0.2
A2 3216L 3.2 ± 0.2 1.6 ± 0.2 1.2 ± 0.1 1.1 ± 0.1 0.8 ± 0.2
A 3216 3.2 ± 0.2 1.6 ± 0.2 1.2 ± 0.1 1.6 ± 0.2 0.8 ± 0.2
B2 3528 3.5 ± 0.2 2.8 ± 0.2 2.3 ± 0.1 1.9 ± 0.2 0.8 ± 0.2
C 6032 6.0 ± 0.2 3.2 ± 0.2 2.2 ± 0.1 2.5 ± 0.2 1.3 ± 0.2 0.4 C
V 7343L 7.3 ± 0.2 4.3 ± 0.2 2.4 ± 0.1 1.9 ± 0.1 1.3 ± 0.2
D 7343 7.3 ± 0.2 4.3 ± 0.2 2.4 ± 0.1 2.8 ± 0.2 1.3 ± 0.2 0.5 C
PERFORMANCE CHARACTERISTICS
Operating temperature range
55 to +105°C with no voltage derating
Surge voltage
Rated voltage 4 6.3 10 V
Surge 5.2 8 13 V
Capacitance (at 20°C, 1 kHz)
Range: 3.3
µ
F to 330
µ
F
Tolerance: ±20%
Capacitance change with temperature
Not to e xceed 20% at 55°C, +50% at 85°C
Tangent of loss angle (at 20°C, 1 kHz)
Refer to Standard Ratings
DC leakage current (at 20°C)
0.1 CVNote
µ
A or 3
µ
A, whichever is greater
Equivalent series resistance (ESR)
(at 20˚C, 100 kHz)
Refer to Standard Ratings
Damp heat (90 to 95% RH at 40°C, 500 h)
Capacitance: +30% to 20%
of rated capacitance
Tangent of loss angle: 150% of initial
requirements
DC leakage current: initial requirements
Endurance (at 85°C , DC r ated voltage, 1000 h)
Capacitance change: ±20%
Tangent of loss angle: 150% of initial
requirements
DC leakage current: initial requirements
Resistance to soldering heat
(solder reflow at 240˚C, 10 s.)
Capacitance change: ±20%
Tangent of loss angle: initial requirements
DC leakage current: initial requirements
Permissible ripple current
0.5 Arms, 0.7 Ap-p (P case)
0.7 Arms, 1 Ap-p (A2, A cases)
0.9 Arms, 1.5 Ap-p (B2 case)
1.5 Arms, 2.0 Ap-p (C case)
1.7 Arms, 2.5 Ap-p (V case)
1.5 Arms, 2.5 Ap-p (D case)
Note: Product of capacitance in
µ
F and voltage in V.
See pages 29 and 30 for taping specifications.
4 6.3 10
µ
F
3.3 A
4.7 P A2, A
6.8 A A, B2
10 P, A A2, A B2
15 A, B2 B2, C
22 B2 A, B2 B2, C
33 B2 B2, C
47 B2, C C, V, D
68 C D
100 B2 D
150 V, D
220 V, D D
330 D D
[P, A2, and A cases] [B2, V cases] [C, D cases]
L
ZZ
W
1
W
2
H
L
ZZ
W
1
W
2
H
LY
Z
Z
W
1
W2 H
Unit: mm
DC Rated
Voltage
(Vdc)
CONDUCTIVE POLYMER TANTALUM CAPACITORS (NeoCapacitors)
24 SELECTION GUIDE EC0171EJSV0SG00
[Production date code]
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1999 a b c d e f g h j k l m
2000 n p q r s t u v w x y z
2001 A B C D E F G H J K L M
2002 N P Q R S T U V W X Y Z
Note: Date code will repeat beginning in 2003.
PART NUMBER SYSTEM
Bulk Tape and Reel
MARKINGS
K j W6 N E K
A A 7
A A8
Production date code
Production date code
Capacitance code Capacitance code
NE for NeoCapacitor
Polarity stripe (+)
Polarity stripe (+)
DC rated voltage
(g: 4 V; j: 6.3 V; A: 10 V) DC rated voltage
S J
Capacitance code
(S: 4.7 F)
µ
Polarity stripe (+)
DC rated voltage
(J: 6.3 V)
Polarity stripe (+)
DC rated voltage
Capacitance code
Production date code
NE for NeoCapacitor
NEK
[P cases] [B2 cases][A2, A cases] [C, V, and D cases]
[Capacitance code]
Code A E J N S W Code 6 7 8
Number 1 1.5 2.2 3.3 4.7 6.8 Multiplier 106107108
Example: A7 = 1.0 × 107 = 107 (pF) = 10
µ
F
Month
Year
Capacitance tolerance ±20%
Special numbering for ESR spec.
Maximum ESR in milliohms @ 100 kHz
ex. (40) shows 40 m
Tape and reel
Tape width
8: 8 mm
12: 12 mm
Packing orientation
R: Cathode on the side of
sprocket hole
Rated voltage
Case code
Same as bulk
(see left)
PS/L Series
0G: 4 V; 0J: 6.3 V; 1A: 10 V
Capacitance in pF
First two digits represent significant
figures and third digit specifies number
of zeros to follow.
PSL D 0J 337 M (40)TE PSLD0J337M 12 R
25SELECTION GUIDE EC0171EJSV0SG00
PS/L Series
DC Leakage Permissible
Part Capacitance Case Current Tangent of ESR Ripple Current
Number (
µ
F) Code (
µ
A) Loss Angle (m)(Ap-p)
4 V Rating
PSLP0G106M 10 P 4 0.15 500 0.7
PSLA0G106M 10 A 4 0.15 500 1.0
PSLB20G226M 22 B2 8.8 0.15 300 1.5
PSLC0G686M 68 C 27.2 0.25 100 2.0
PSLB20G107M 100 B2 40 0.25 80 1.5
PSLV0G227M 220 V 88 0.50 45 2.5
PSLD0G227M 220 D 88 0.50 80 2.5
PSLD0G227M(60) 220 D 88 0.50 60 2.5
PSLD0G227M(55) 220 D 88 0.50 55 2.5
PSLD0G227M(40) 220 D 88 0.50 40 2.5
PSLD0G337M 330 D 132 0.50 55 2.5
PSLD0G337M(40) 330 D 132 0.50 40 2.5
6.3 V Rating
PSLP0J475M 4.7 P 2.9 0.09 500 0.7
PSLA0J685M 6.8 A 4.2 0.09 800 1.0
PSLA20J106M 10 A2 6.3 0.15 500 1.0
PSLA0J106M 10 A 6.3 0.15 500 1.0
PSLA0J156M 15 A 9.45 0.15 500 1.0
PSLB20J156M 15 B2 9.4 0.15 300 1.5
PSLA0J226M 22 A 13.8 0.15 500 1.0
PSLB20J226M 22 B2 13.8 0.15 300 1.5
PSLB20J336M 33 B2 20.7 0.15 300 1.5
PSLB20J476M 47 B2 29.6 0.25 200 1.5
PSLC0J476M 47 C 29.6 0.25 100 2.0
PSLC0J686M 68 C 42.8 0.25 100 2.0
PSLV0J157M 150 V 94.5 0.30 45 2.5
PSLD0J157M 150 D 94.5 0.30 80 2.5
PSLD0J157M(60) 150 D 94.5 0.30 60 2.5
PSLD0J157M(55) 150 D 94.5 0.30 55 2.5
PSLD0J157M(40) 150 D 94.5 0.30 40 2.5
PSLD0J227M 220 D 138.6 0.50 80 2.5
PSLD0J227M(55) 220 D 138.6 0.50 55 2.5
PSLD0J227M(40) 220 D 138.6 0.50 40 2.5
PSLD0J337M 330 D 207.9 0.50 55 2.5
PSLD0J337M(40) 330 D 207.9 0.50 40 2.5
PSLD0J337M(25) 330 D 207.9 0.50 25 2.5
10 V Rating
PSLA1A335M 3.3 A 3.3 0.09 800 1.0
PSLA21A475M 4.7 A2 4.7 0.09 500 1.0
PSLA1A475M 4.7 A 4.7 0.09 800 1.0
PSLA1A685M 6.8 A 6.8 0.15 800 1.0
PSLB21A685M 6.8 B2 6.8 0.15 500 1.5
PSLB21A106M 10 B2 10 0.15 300 1.5
PSLB21A156M 15 B2 9.5 0.15 300 1.5
PSLC1A156M 15 C 15 0.25 200 2.0
PSLB21A226M 22 B2 13.8 0.15 300 1.5
PSLC1A226M 22 C 22 0.25 150 2.0
PSLB21A336M 33 B2 33 0.25 200 2.0
PSLC1A336M 33 C 33 0.25 100 2.0
PSLC1A476M 47 C 47 0.25 100 2.0
PSLV1A476M 47 V 47 0.30 60 2.5
PSLD1A476M 47 D 47 0.30 100 2.5
PSLD1A686M 68 D 68 0.30 100 2.5
PSLD1A107M 100 D 100 0.30 80 2.5
PSLD1A107M(55) 100 D 100 0.30 55 2.5
STANDARD RATINGS
26 SELECTION GUIDE EC0171EJSV0SG00
PS/N Series NeoCapacitors
DIMENSIONS [mm]
Case
Code LW1W2HZY
A 3.2 ± 0.2 1.6 ± 0.2 1.2 ± 0.1 1.6 ± 0.2 0.8 ± 0.2
B2 3.5 ± 0.2 2.8 ± 0.2 2.3 ± 0.1 1.9 ± 0.2 0.8 ± 0.2
C 6.0 ± 0.2 3.2 ± 0.2 2.2 ± 0.1 2.5 ± 0.2 1.3 ± 0.2 0.4 C
D 7.3 ± 0.2 4.3 ± 0.2 2.4 ± 0.1 2.8 ± 0.2 1.3 ± 0.2 0.5 C
PERFORMANCE CHARACTERISTICS
Operating temperature range
55 to +85°C with no voltage derating
Surge voltage
Rated voltage 4 6.3 10 16 V
Surge 5.2 8 13 20 V
Capacitance (at 20°C, 1 kHz)
Range: 3.3
µ
F to 220
µ
F
Tolerance: ±20%
Capacitance change with temperature
Not to exceed 20% at 55°C, +50% at 85°C
Tangent of loss angle (at 20°C, 1 kHz)
Refer to Standard Ratings
DC leakage current (at 20°C)
0.1 CVNote
µ
A or 3
µ
A, whichever is greater
Equivalent series resistance (ESR)
(at 20˚C, 100 kHz)
Refer to Standard Ratings
Damp heat (90 to 95% RH at 40°C, 500 h)
Capacitance ±30% to 20% of rated capaci-
tance
Tangent of loss angle: 150% of initial
requirements
DC leakage current: initial requirements
Endurance (at 85°C, DC rated v oltage, 1000 h)
Capacitance change: ±20%
Tangent of loss angle: 150% of initial
requirements
DC leakage current: initial requirements
Resistance to soldering heat
(solder reflow at 240˚C, 10 s.)
Capacitance change: ±20%
Tangent of loss angle: initial requirements
DC leakage current: initial requirements
Permissible ripple current
0.7 Arms, 1 Ap-p (A case)
0.9 Arms, 1.5 Ap-p (B2 case)
1.5 Arms, 2.5 Ap-p (C, D cases)
Note: Product of capacitance in
µ
F and voltage in V.
See pages 29 and 30 for taping specifications.
4 6.3 10 16
µ
F
3.3 A A
4.7 A B2
6.8 A B2 B2
10 A A B2
15 B2 C
22 B2 C
33 C
47 C D
68 C D
100 D
150 D
220 D
L
ZZ
W
1
W
1
W
1
L
L
W
2
Z
Z
[A cases] [B2 cases] [C, D cases]
ZZ
W
2
W
2
H
H
Y
H
(Unit: mm)
DC Rated
Voltage
(Vdc)
27SELECTION GUIDE EC0171EJSV0SG00
PS/N Series
[Production date code]
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1999 a b c d e f g h j k l m
2000 n p q r s t u v w x y z
2001 A B C D E F G H J K L M
2002 N P Q R S T U V W X Y Z
Note: Production date code will repeat beginning in 2003.
PART NUMBER SYSTEM
Bulk Tape and Reel
MARKINGS
Production date code
Rated voltage
(g: 4 V; j: 6.3 V; A: 10 V; C: 16 V)
Capacitance code
Production date code
NE for NeoCapacitor
Polarity stripe (+)
Production date code
NE for NeoCapacitor
Capacitance code
Polarity stripe (+)
[A cases] [B2 cases] [C, D cases]
g A7 f
A A 8
N E K
C W6
NE f
Polarity stripe (+)
Capacitance code
Rated voltage
Rated voltage
[Capacitance code]
Code A E J N S W Code 4 5 6 7 8
Number 1.0 1.5 2.2 3.3 4.7 6.8 Multiplier 104105106107108
Example: A7 = 1.0 × 107 = 107 pF = 10
µ
F
Month
Year
Capacitance tolerance
20%)
Tape and reel
Tape width
Packing orientation
[R: Cathode on the side of
sprocket hole]
Rated voltage
Case code
Same as bulk (see left)
PS/N Series
(0G: 4 V; 0J: 6.3 V; 1A: 10 V; 1C: 16 V)
Capacitance in pF
First two digits represent significant
figures and third digit specifies number
of zeros to follow.
PSN A 0J 106 M TE PSNA0J106M 8 R
(
)
8: 8 mm
12: 12 mm
28 SELECTION GUIDE EC0171EJSV0SG00
Permissible
Part Capacitance Case Tangent of ESR Ripple Current
Number (
µ
F) Code Loss Angle (m)(Ap-p)
16 V Rating
PSNA1C335M 3.3 A 5.3 0.09 900 1
PSNB21C475M 4.7 B2 7.5 0.15 600 1.5
PSNB21C685M 6.8 B2 10.9 0.15 600 1.5
10 V Rating
PSNA1A335M 3.3 A 3.3 0.09 900 1
PSNA1A475M 4.7 A 5.0 0.09 900 1
PSNB21A685M 6.8 B2 6.8 0.15 600 1.5
PSNB21A106M 10 B2 10.0 0.15 400 1.5
PSNC1A156M 15 C 15.0 0.20 250 2.5
PSNC1A226M 22 C 22.0 0.20 200 2.5
PSNC1A336M 33 C 33.0 0.20 150 2.5
PSND1A476M 47 D 47.0 0.30 150 2.5
PSND1A686M 68 D 68.0 0.30 120 2.5
PSND1A107M 100 D 100 0.30 80 2.5
6.3 V Rating
PSNA0J685M 6.8 A 4.2 0.09 900 1
PSNA0J106M 10 A 6.3 0.15 600 1
PSNB20J156M 15 B2 9.5 0.15 400 1.5
PSNC0J476M 47 C 29.6 0.20 150 2.5
PSND0J157M 150 D 94.5 0.30 80 2.5
4 V Rating
PSNA0G106M 10 A 4.0 0.15 600 1
PSNB20G226M 22 B2 8.8 0.15 400 1.5
PSNC0G686M 68 C 27.2 0.20 150 2.5
PSND0G227M 220 D 88.0 0.50 80 2.5
STANDARD RATINGS
DC Leakage
Current
(
µ
A)
29SELECTION GUIDE EC0171EJSV0SG00
TAPE AND REEL SPECIFICATIONS
Plastic Tape Carrier
Case Code A0 ± 0.2 B0 ± 0.2 K ± 0.2
P 1.4 2.2 1.4
A2 (U) 1.9 3.5 1.4
A 1.9 3.5 1.9
B2 (S) 3.3 3.8 2.1
C 3.7 6.4 3.0
V 4.6 7.7 2.4
D 4.8 7.7 3.3
Case W ± 0.3 F ± 0.05
Code
P
A2 (U) 8 3.5
A
B2 (S)
C
V 12 5.5
D
Unit: mm
P
0
A
0
D
0
D
1
t
K
Sprocket hole Emboss
P
2
EF
B
0
W
P
1
Feed direction
Tape and Reel Specification for Chips
E ± 0.1
1.75
P1 ± 0.1
4
8
P2 ± 0.05
2
P0 ± 0.1
4
D0+0.1
φ
1.5
t
0.2
0.3
0.4
0.3
D1+0.1
φ
1.0
φ
1.5
00
30 SELECTION GUIDE EC0171EJSV0SG00
REEL
B
D
R
W
1
W
2
C
N
A
T ape Width A ± 2 N Min. C ± 0.5 D ± 0.5 B ± 0.5 W1W2 Max. R
8 mm
φ
180
φ
50
φ
13
φ
21 2 9.0 ± 0.3 11.4 ± 1.0 1
12 mm 13.0 ± 0.3 15.4 ± 1.0
8 mm
φ
330
φ
80
φ
13
φ
21 2 9.5 ± 0.5 14.5 Max. 1
12 mm 13.5 ± 0.5 18.5 Max.
Case Code
φ
180 Reel
φ
330 Reel
P 3000
A2 (U) 3000 10,000
A 2000 9000
B2 (S) 2000 5000
V 1000 3000
C, D 500 2500
[Quantity Per Reel]
Unit: mm
31SELECTION GUIDE EC0171EJSV0SG00
NOTES ON USING THE SOLID TANTALUM CAPACITORS
1. Circuit Design
(1) Reliability
The reliability of the solid tantalum capacitor is heavily influenced by environmental conditions such as tempera-
ture, humidity, shock, vibration, mechanical stresses, and electric stresses, including applied voltage, current,
ripple current, transient current and voltage, and frequency. When using solid tantalum capacitors, therefore,
provide enough margin so that the reliability of the capacitors is maintained.
Voltage and temperature are important pa-
rameters when estimating the reliability (field
failure rate).
The field failure rate of a solid tantalum ca-
pacitor can be calculated by the following ex-
pression if emphasis is placed only on the
voltage and temperature:
λ = λ0(V/V0)3 × 2(TT0)/10
Where
λ: estimated failure rate in actual working
condition
temperature: T; v oltage: V
λ0: failure rate under rated load (See table
below.)
temperature: T0; voltage: V0
Failure rate level λ0 of each series
Series Failure rate level
PS /L 1%/1000 h
PS / N 1%/1000 h
R (standard) 1%/1000 h
R (extended) 1%/1000 h
SV/ S 1%/1000 h
SV/ H 0.5%/1000 h
SV/ F 1%/1000 h
SV/ Z 1%/1000 h
<Test conditions>
Temperature: 85°C
Voltage: rated voltag e
RS: 3
80
70
60
50
40
30
20
7
The figure indicates an
operation example under
the following conditions:
Ambient temperature: 25°C
Working voltage ratio: 0.3
Where the multiple of the
failure rate is F = 4 × 10
4
Therefore, estimated failure
rate λ is:
λ = 2 × 10
5
× 4 × 10
4
= 8 (FIT)
Note: Where λ
0
= 2%/1000 h
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
TFV
0.2
0.1
10
0
10
1
10
2
10
3
10
4
10
5
4
2
7
4
2
7
4
2
7
4
2
7
4
2
Ambient temperature (°C)
Multiple of failure rate (F)
Working voltage/rated voltage
This figure graphically indicates (V/V
0
)
3
× 2
(TT
0
)/10
in the
expression λ = λ
0
(V/V
0
)
3
× 2
(TT
0
)/10
. By using this figure, the
estimated failure rate can be easily calculated.
Connect the desired temperature and voltage ratio with a straight
line (from the left most vertical axis in the figure to the right most
axis) in the figure. The multiple of the failure rate can be obtained at
the intersection of the line drawn and the middle vertical axis in the
figure.
Therefore,
λ = λ
0
× F
Where
F: multiple of failure rate at given temperature and ratio of working
voltage to rated voltage.
Tape and Reel Specification for Chips
32 SELECTION GUIDE EC0171EJSV0SG00
2. Ripple V oltage
(1) Keep the sum of the DC voltage and peak value of the r ipple voltage within the rated voltage.
(2) If a r ipple voltage is applied to the capacitor, the peak value of the ripple voltage must be kept within the
values shown in the following figures:
Calculate the permissible ripple voltage at a temperature higher than that
specified in these figures by using the following expressions:
Vr.m.s. (at 50°C) = 0.7 × Vr.m.s. (at 25°C)
Vr.m.s. (at 85°C) = 0.5 × Vr.m.s. (at 25°C)
Vr.m.s. (at 125°C) = 0.3 × Vr.m.s. (at 25°C)
(3) Keep the negative peak value of the r ipple voltage within the per missible reverse voltage value specified in
the following section, Reverse Voltage.
100
Chips
10
1
0.1 0.1 1
Frequency (kHz)
Permissible ripple voltage Vr.m.s.
at 25 °C
10 100
50 V Case : P, A2, A, B, B2, B
@25°C
35 V
25 V
20 V
16 V
10 V
6.3 V
4 V
100
10
1
0.1 0.1 1
Frequency (kHz)
Permissible ripple voltage Vr.m.s.
at 25 °C
10 100
50 V Case : C, D2, V, D
@25°C
35 V
25 V
20 V
16 V
10 V
6.3 V
4 V
2.5 V
2.5 V
Voltage (V)
DC Voltage
Working Voltage
Rated Voltage
Ripple
Voltage
Time (seconds)
33SELECTION GUIDE EC0171EJSV0SG00
3. Reverse V oltage
(1) Because the solid tantalum capacitor is of polar type,
do not apply a reverse voltage to it. If reverse voltage
cannot be avoided, it must be applied for a shor t time
and must not exceed the following values:
25°C......10% max. of rated voltage or 3 Vdc, which-
ever is smaller
85°C......5% max. of rated voltage
125°C ......1% max. of rated voltage
(2) The figure on the right shows the relationship between
current and reverse voltage.
4. Applied V oltage
(1) For general applications, apply 70% or less of the rated voltage to the capacitor.
(2) When the capacitor is used in a power line or a low-impedance circuit, keep the applied voltage within 30%
(50% max.) of the rated voltage to avoid the adverse influence of inrush current.
(3) Derated voltage at 85°C or more.
When using a Chip-type capacitor at a temperature of 85°C or higher, calculate reduced voltage UT from
the following expression. Note, however, that the ambient temperature must not exceed 125°C.
The rated voltage ratio is as shown in the figure on the right.
URUC
UT = V0 (T85)
40
Where
UR: rated voltage (V)
UC: derated voltage at 125°C
T: ambient temperature (°C)
5. Current (Series Resistance)
As shown in the figure on the right, reliability is
increased by inserting a series resistance of at
least 3/V into circuits where current flow is mo-
mentary (switching circuits, charge/discharge cir-
cuits, etc). If the capacitor is in a low-impedance
circuit, the voltage applied to the capacitor should
be less than 1/2 to 1/3 of the DC rated voltage.
6.3 V 22 F
0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
500
1000
1500
2000
2500
µ
6.3 V 22 F
µ
16 V 4.7 F
Leakage current ( A)
µ
µ
Leakage current ( A)
µ
16 V 4.7 F
VA
1k
VA
1k
µ
35 V 1 F
Forward
voltage
Reverse
voltage
µ
86420 +10 +20 +30 +40
100
85
Ambient temperature (°C)
Approx.
63%
Rated voltage (%)
125
50
0
10
10
0.1
0.1 1 10
Note: Where series protective
resistance of 3 /V is 1
100
Series resistance (/V)
Current value (A)
10 1 0.1 0.01
Multiple of failure rate
34 SELECTION GUIDE EC0171EJSV0SG00
NOTES ON USING THE CHIP TANTALUM CAPACITORS, EXCLUDING NeoCapacitors
1. Mounting
(1) Direct Soldering
Keep the following points in mind when soldering the capacitor by means of jet soldering or dip solder ing:
(a) Temporarily fixing resin
Because chip tantalum capacitors are larger and subject to more force than chip multilayer ceramic capacitors
or chip resistors, more resin is required to temporarily secure the solid tantalum capacitors. However, if too
much resin is used, the resin adhering to the patterns on a printed circuit board may adversely affect the
solderability.
(b) Pattern design
(mm)
Case a b c
P 2.2 1.4 0.7
A2 (U), A 2.9 1.7 1.2
B3 (W), B2 (S) 3.0 2.8 1.6
B 3.3 1.9 2.4
C 4.1 2.3 2.4
D2 5.4 2.9 2.4
D 5.2 2.9 3.7
The above dimensions are for reference only. If the capacitor is to be mounted by this method, and if the
pattern is too small, the solderability may be degraded.
(c) Temperature and time
Keep the peak temperature and time within the following values:
Solder temperature ................... 260°C max.
Time............................................ 5 seconds max. (10 seconds max. for SVH)
Whenever possible, perfor m preheating (at 150°C max.) for a smooth temperature profile. To maintain reli-
ability, mount the capacitor at low temperature and in a shor t time.
(d) Component layout
If many types of chip components are mounted on a printed circuit board that is to be soldered by means of
jet soldering, solderability may not be uniform over the entire board, depending on the layout and density of
the components on the board (also take into consideration generation of flux gas).
(e) Flux
Use resin-based flux. Do not use flux with strong acidity.
a a
b
c
35SELECTION GUIDE EC0171EJSV0SG00
(2) Reflow Soldering
Keep the following points in mind when solder ing the capacitor in a soldering oven or with a hot plate:
(a) Pattern design (in accordance with IEC1188)
(mm)
Case G Max. Z Min. X Min.
P 0.5 2.6 1.2
A2 (U), A 1.1 3.8 1.5
B3 (W), B2 (S) 1.4 4.1 2.7
B 2.6 5.6 2.9
C 2.9 6.9 2.7
D2 2.7 6.7 2.9
D 4.1 8.2 2.9
The above dimensions are recommended. Note that if the pattern is too big, the component may not be
mounted in place.
(b) Temperature and time
Keep the peak temperature and time within the following values:
Solder temperature................... 260°C max.
Time............................................ 10 seconds max.
Whenever possible, perform preheating (at 150°C max.) for a smooth temperature profile. To maintain
reliability, mount the capacitor at low temperature and in a short time. The peak temperature and time
shown above are applicable when the capacitor is to be soldered in a soldering oven or with a hot plate.
When the capacitor is soldered by means of infrared reflow soldering, the internal temperature of the ca-
pacitor may r ise beyond the surface temperature.
(3) Using a Soldering Iron
When soldering the capacitor with a soldering iron, controlling the temperature at the tip of the soldering iron is
ver y difficult. However, it is recommended that the following temperature and time be obser ved to maintain the
reliability of the capacitor:
Iron temperature..........................300°C max.
Time ..............................................3 seconds max.
Iron power .................................... 30 W max.
G
X
Z
36 SELECTION GUIDE EC0171EJSV0SG00
2. Cleaning
Generally, several organic solvents are used for flux cleaning of an electronic component after soldering. Many
cleaning methods, such as immersion cleaning, rinse cleaning, brush cleaning, shower cleaning, vapor cleaning, and
ultrasonic cleaning, are available; cleaning methods may be used alone or two or more may be used in combination.
The temperature of the organic solvent may var y from room temperature to several 10°C, depending on the desir ed
effect. If cleaning is carried out with emphasis placed only on the cleaning effect, however, the marking on the
electronic component cleaned may be erased, the appearance of the component may be damaged, and, in the worst
case, the component may be functionally damaged. It is therefore recommended that the R series solid tantalum
capacitor be cleaned under the following conditions:
Recommended conditions of flux cleaning
(1) Cleaning solvent............Chlorosen, isopropyl alcohol
(2) Cleaning method ...........Shower cleaning, rinse cleaning, vapor cleaning
(3) Cleaning time.................5 m i n utes max.
Note. Ultrasonic cleaning
This cleaning method is extremelys effective for eliminating dust generated by mechanical processes, but may pose
problems depending on the condition. An experiment conducted by NEC confirmed that the exter nal terminals of the
capacitor were cut when it was cleaned with some ultrasonic cleaning machines. The cause of this phenomenon is
metal fatigue of the capacitor terminals due to ultrasonic cleaning. To prevent the ter minal from being cut, decreasing
the output power of the ultrasonic cleaning machine or shortening the cleaning time may be effective. However, it is
difficult to specify the cleaning conditions because there are many factors involved, such as the conversion effi-
ciency of the ultrasonic oscillator, transfer efficiency of the cleaning bath, difference in cleaning effect depending on
the location in the cleaning bath, the size and quantity of the printed circuit boards to be cleaned, and the securing
states of the components on the boards. It is therefore recommended that ultrasonic cleaning be avoided as much as
possible.
If ultrasonic cleaning is essential, make sure through experiments that no abnormalities occur as a result of the
cleaning. For fur ther information, consult NEC.
3. Other
(1) Do not subject the capacitor to excessive vibration and shock.
(2) The solderability of the capacitor may be degraded by humidity. Store the capacitor at room temperature (5 to +40°C)
and humidity (40 to 60% RH).
(3) Take care that no external force is applied to tape-packaged products (if the packaging material is defor med, the
capacitor may not be automatically mounted by a chip mounter).
37SELECTION GUIDE EC0171EJSV0SG00
NOTES ON USING NeoCapacitors
1. Permissible Ripple Current
Permissible ripple current shall be derated as follows:
(1) Temperature Change
55˚C to +85˚C (+105˚C: PS /L only): Rating value (PS /L: p. 25, PS /N: p. 28)
(2) Switching Frequency
1 MHz: Rating value (PS /L: p. 25, PS /N: p. 28)
500 kHz: 0.9 times rating value
100 kHz: 0.75 times rating value
2. Mounting
This capacitor is designed to be surface mounted by means of reflow solder ing.
(The conditions under which the capacitor should be soldered with a soldering iron are explained in (2) Using
a Soldering Iron. Because the capacitor is not designed to be soldered by means of laser beam soldering, VPS,
or flow soldering, the conditions for these solder ing methods are not explained in this document.
(1) Reflow Soldering
Keep the following points in mind when solder ing the capacitor in a soldering oven with a hot plate:
(a) Pattern design (in accordance with IEC1188)
(mm)
Case G Max. Z Min. X Min.
P 0.5 2.6 1.2
A2 (U), A 1.1 3.8 1.5
B2 (S) 1.4 4.1 2.7
C 2.9 6.9 2.7
V, D 4.1 8.2 2.9
The above dimensions are recommended. Note that if the pattern is too big, the component may not be mounted
in place.
G
X
Z
38 SELECTION GUIDE EC0171EJSV0SG00
(b) Temperature and time
Keep the peak temperature and time within the following recommended conditions.
Whenever possible, perform preheating (at 150°C max.) for a smooth temperature profile. To maintain reliability, mount the
capacitor at low temperature and in a short time. The peak temperature and time shown above are applicable when the
capacitor is to be soldered in a soldering oven or with a hot plate . When the capacitor is soldered by means of infrared reflo w
soldering, the internal temperature of the capacitor may rise beyond the surface temperature.
(2) Using a Soldering Iron
When soldering the capacitor with a solder ing iron, controlling the temperature at the tip of the soldering iron is
very difficult. However, it is recommended that the following temperature and time be observed to maintain the
reliability of the capacitor :
Iron temperature 300°C max.
Time ………………… 3 seconds max.
Iron power ………… 30 W max.
3. Cleaning
Generally, several organic solvents are used for flux cleaning of an electronic component after soldering.
Many cleaning methods, such as immersion cleaning, rinse cleaning, brush cleaning, shower cleaning, vapor
cleaning, and ultrasonic cleaning, are available, whith m a y b e used alone or in combination. The temperature of
the organic solvent may vary from room temperature to several 10°C, depending on the desired effect. If cleaning
is carried out with emphasis placed only on the cleaning effect, however, the marking on the electronic compo-
nent cleaned may be erased, the appearance of the component may be damaged, and, in the worst case, the
component may be functionally damaged. It is therefore recommended that the NeoCapacitor b e c l eaned under
the following conditions:
[Recommended conditions of flux cleaning]
(1) Cleaning solvent ............. Chlorosen, isopropyl alcohol
(2) Cleaning method ............ Shower cleaning, rinse cleaning, vapor cleaning
(3) Cleaning time.................. 5 minutes max.
Note: Ultrasonic cleaning
This cleaning method is extremely effective for eliminating dust generated by mechanical processes, but may
pose problems, depending on the condition. An experiment conducted by NEC confir med that the external termi-
nals of the capacitor were cut when it was cleaned with some ultrasonic cleaning machines. The cause of this
phenomenon is metal fatigue of the capacitor terminals due to ultrasonic cleaning. To prevent the ter minal from
being cut, decreasing the output power of the ultrasonic cleaning machine or decreasing the cleaning time may
b e effective. H o we ve r, i t i s difficult to specify safe cleaning conditions because there are many factors involved,
such as the conversion efficiency of the ultrasonic oscillator, transfer efficiency of the cleaning bath, difference in
cleaning effect depending on the location in the cleaning bath, the size and quantity of the printed circuit boards
to be cleaned, and the securing states of the components on the boards. It is therefore recommended that
ultrasonic cleaning be avoided as much as possible.
If ultrasonic cleaning is essential, make sure through experiments that no abnor malities occur as a result of the
cleaning. For fur ther information, contact NEC.
280
260
240
220
200 10 20
Recommended
conditions
Time (seconds)
Temperature (˚C)
39SELECTION GUIDE EC0171EJSV0SG00
4. Other
(1) Do not subject the capacitor to excessive vibration and shock.
(2) The solderability of the capacitor may be degraded by humidity. Store the capacitor at room temperature (5 to +40°C)
and humidity (40 to 60% RH).
(3) Take care that no external force is applied to tape-packaged products (if the packaging material is deformed, (2 ) the
capacitor may not be automatically mounted by automatic insertion equipment).
40 SELECTION GUIDE EC0171EJSV0SG00
41SELECTION GUIDE EC0171EJSV0SG00
42 SELECTION GUIDE EC0171EJSV0SG00
The information in this document is based on documents issued in July, 2000 at the latest.
The information is subject to change without notice. For actual design-in, refer to the latest of
data sheets, etc., for the most up-to-date specifications of the device.
No par t of this document may be copied or reproduced in any for m or by any means without the
prior written consent of NEC Cor poration. NEC Corporation assumes no responsibility for any
errors which may appear in this document.
NEC Cor poration does not assume any liability for infringement of patents, copyrights, or other
intellectual proper ty rights of third par ties by or arising from use of a device descr ibed herein or
any other liability arising from use of such device. No license, either express, implied, or other-
wise, is granted under any patents, copyrights, or other intellectual proper ty rights of NEC Cor-
poration or others.
While NEC Corporation has been making a continuous effort to enhance the reliability of its
electronic components, the possibility of defects cannot be eliminated entirely. To minimize risks
of damage or injury to persons or proper ty arising from a defect in an NEC electronic compo-
nent, customers must incorporate sufficient safety measures in its design, such as redundancy,
fire-containment, and anti-failure features. NEC devices are classified into the following three
quality grades:
"Standard," "Special," and "Specific." The Specific quality grade applies only to devices devel-
oped based on a customer-designated quality assurance program for a specific application. The
recommended applications of a device depend on its quality grade, as indicated below. Custom-
ers must check the quality grade of each device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement
equipment, audio and visual equipment, home electronic appliances, machine tools,
personal electronic equipment, and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,
anti-disaster systems, anti-crime systems, safety equipment, and medical equip-
ment (not specifically designed for life suppor t)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control sys-
tems, life support systems, or medical equipment for life suppor t, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's data sheets
or data books. If customers intend to use NEC devices for applications other than those specified
for Standard quality grade, they should contact an NEC sales representative in advance.
(Note)
(1) "NEC" as used in this statement means NEC Cor poration and also includes its majority-owned
subsidiaries.
(2) "NEC electronic component products" means any electronic component product developed or
manufactured by or for NEC (as defined above). DE0102
43SELECTION GUIDE EC0171EJRV0SG00
©
1987(1996)
Document No. EC0171EJSV0SG00 (26th edition)
Date Published August 2000 M CP(K)
Cat. No. E71027
00080504M
Printed in Japan
For further information, please contact:
NEC Corporation
NEC Eleotron Devices
7-1, Shiba 5-chome, Minato-ku
Tokyo 108-8001, Japan
Tel: 03-3798-6148
Fax: 03-3798-6149
[North & South America]
NEC Electronics Inc.
Electron Components
2880 Scott Boulevard P.O.Box 58062
Santa Clara, CA 95052-8062, USA
Tel: 408-588-6000
Fax: 408-588-6130
(Regional Sales Offices)
Central Region
Greenspoint Tower
2800 West Higgins Road
Suite 765
Hoffman Estates, IL 60195
Tel: 708-5l9-3930
Fax: 708-519-9329
Northem California Region
3033 Scott Boulevard
Santa Clara, CA 95050
Tel: 408-588-5100
Fax: 408-588-5134
Eastem Region
901 N. Lake Destiny Drive
Suite 320
Maitland, FL 32751, U.S.A.
Tel: 407-875-1145
Fax: 407-875-0962
Western Region
One Embassy Centre
9020 S.W. Washington
Square Road
Suite 400
Tigard, OR 97223
Tel: 503-671-0177
Fax: 503-643-5911
NEC do Brasil S.A.
Dlv. Componentes Electronicos
Rodovia Presidente Dutra, Km 218
CEP 07210-902-Jd.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6462-6810
Fax: 011-6462-6829
[Europe]
NEC Electronics (Germany) GmbH
Kanzlerstr, 2,
40472 Düsseldorf
Germany
Tel: 0211-650302
Fax: 0211-6503490
NEC Electronics (Benelux).
Boschdijk 187a
NL 5612 HB Eindhoven
Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (Scandinavia)
P.O. Box 134
S-18322 Taeby, Sweden
Tei: 08-6380820
Fax: 08-6380388
NEC Electronics (France) S.A.
9, rue Paul Dautier-BP187
78142 Velizy-Villacoublay Cedex
France
Tel: 01-30 67 58 00
Fax: 01-30 67 58 99
Madrid Office
Juan Esplandiu, 15
E-28007 Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860
NEC Electronics Italiana s.r.1.
Via Fabio Filzi 25/A
201 24 Milano, Italy
Tel: 02-667541
Fax: 02-66754299
NEC Electronics (UK) Limited
Cygnus House, Sunrlse Parkway,
Milton Keynes, MK 14 6NP, U.K.
Tel: 01908-691133
Fax: 01908-670290
Dublin Office
34/35, South William Street
Dublin 2, Ireland
Tel: 01-6794200
Fax: 01-6794081
[Asia & Oceania]
NEC Electronics Hong Kong Limited
12/F., Cityplaza 4, 12
Taikoo Wan Road, Hong Kong
Tel: 2886-9318
Fax: 2886-9022, 2886-9044
Seoul Branch
10F, ILSONG Bldg., 157-37
Samsung-Dong, Kangnam-Ku,
Seoul, the Republic of Korea
Tel: 02-528-0303
Fax: 02-528-4411
Shen-Zhen Office
Room 03-05, 51/F, Office Tower, Shun Hing Square
5002 Shen Nan Dong Road, Shenzhen, China
Tel: 755-246-1092/1976
Fax: 755-246-1786
Australia Representative Office
303-313 Bunwood Highway
Burwood East, Victoria 3151, Australia
Tel: 03-98878012
Fax: 03-98878014
NEC Electronics Taiwan Ltd.
7F. NO. 363 Fu Shing North Road
Taipei, Taiwan, R.O.C.
Tel: 02-2719-2377
Fax: 02-2719-5951/5936
NEC Eiectronics Singapore Pte. Ltd.
101 Thomson Road #04-01/05
United Square, Singapore 307591
Tel: 65-253-8311
Fax: 65-250-3583 AE0201
On the Internet at http://www.ic.nec.co.jp/compo/indexe.html