GS81302D07/10/19/37E-450/400/350/333/300
144Mb SigmaQuad-II+TM
Burst of 4 SRAM
450 MHz–300 MHz
1.8 V VDD
1.8 V and 1.5 V I/O
165-Bump BGA
Commercial Temp
Industrial Temp
Rev: 1.04 4/2011 1/31 © 2011, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Features
• 2.0 clock Latency
• Simultaneous Read and Write SigmaQuad™ Interface
• JEDEC-standard pinout and package
• Dual Double Data Rate interface
• Byte Write controls sample d at da ta-i n time
• Burst of 4 Read and Write
• On-Die Termination (ODT) on Data (D), Byte Write (BW),
and Clock (K, K) inputs
• 1.8 V +100/–100 mV core power supply
• 1.5 V or 1.8 V HSTL Interface
• Pipelined read operation
• Fully coherent read and write pipelin es
• ZQ pin for programmable output dri ve streng th
• Data Valid Pin (QVLD) Support
• IEEE 1149.1 JTAG-compliant Boundary Scan
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package
• RoHS-compliant 165-bump BGA package available
SigmaQuad Family Overview
The GS81302D07/10/19/37E are buil t in compliance with the
SigmaQuad-II+ SRAM pinout standard for Separate I/O
synchronous SRAMs. They are 150,9 94,944-bit (144Mb)
SRAMs. The GS81302D07/ 10/19/37E SigmaQuad SRAMs
are just one element in a family of low power, low voltage
HSTL I/O SRAMs designed to operate at the speeds needed to
implement economical high performance networking syst ems.
Clocking and Addressing Schemes
The GS81302D07/10/19/37E SigmaQuad -II+ SRAMs are
synchronous devices. They em pl oy two input register clock
inputs, K and K. K and K are independent single-ended clock
inputs, not differential inputs to a single differential clock input
buffer.
Each internal read and write operation in a SigmaQuad-II+ B4
RAM is four times wider than the device I/O bus. An input
data bus de-multiplexer is used to accumulate incoming data
before it is simultaneously written to the mem ory array. An
output data multiplexer is used to capture the data produced
from a single memory array read and then route it to the
appropriate output drivers as needed. Therefore the address
field of a SigmaQuad-II+ B4 RAM is always two address pins
less than the advertised index depth (e.g., the 16M x 8 has a
4M addressable index).
Parameter Synopsis
-450 -400 -350 -333 -300
tKHKH 2.2 ns 2.5 ns 2.86 ns 3.0 ns 3.3 ns
tKHQV 0.45 ns 0.45 ns 0.45 ns 0.45 ns 0.45 ns
16M x 8 SigmaQuad-II SRAM—Top View
12345678910 11
A CQ SA SA WNW1 KSA RSA SA CQ
B NC NC NC SA NC/SA
(288Mb) KNW0 SA NC NC Q3
C NC NC NC VSS SA NC SA VSS NC NC D3
D NC D4 NC VSS VSS VSS VSS VSS NC NC NC
E NC NC Q4 VDDQ VSS VSS VSS VDDQ NC D2 Q2
F NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC
G NC D5 Q5 VDDQ VDD VSS VDD VDDQ NC NC NC
H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ
J NC NC NC VDDQ VDD VSS VDD VDDQ NC Q1 D1
K NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC
L NC Q6 D6 VDDQ VSS VSS VSS VDDQ NC NC Q0
M NC NC NC VSS VSS VSS VSS VSS NC NC D0
N NC D7 NC VSS SA SA SA VSS NC NC NC
P NC NC Q7 SA SA QVLD SA SA NC NC NC
R TDO TCK SA SA SA ODT SA SA SA TMS TDI
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch
Notes:
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.
2. B5 is the expansion address.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 2/31 © 2011, GSI Technology
16M x 9 SigmaQuad-II SRAM—Top View
12345678910 11
A CQ SA SA WNC KSA RSA SA CQ
B NC NC NC SA NC/SA
(288Mb) KBW0 SA NC NC Q4
C NC NC NC VSS SA NC SA VSS NC NC D4
D NC D5 NC VSS VSS VSS VSS VSS NC NC NC
E NC NC Q5 VDDQ VSS VSS VSS VDDQ NC D3 Q3
F NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC
G NC D6 Q6 VDDQ VDD VSS VDD VDDQ NC NC NC
H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ
J NC NC NC VDDQ VDD VSS VDD VDDQ NC Q2 D2
K NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC
L NC Q7 D7 VDDQ VSS VSS VSS VDDQ NC NC Q1
M NC NC NC VSS VSS VSS VSS VSS NC NC D1
N NC D8 NC VSS SA SA SA VSS NC NC NC
P NC NC Q8 SA SA QVLD SA SA NC D0 Q0
R TDO TCK SA SA SA ODT SA SA SA TMS TDI
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to D0:D8.
2. B5 is the expansion address.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 3/31 © 2011, GSI Technology
8M x 18 SigmaQuad-II+ SRAM—Top View
12345678910 11
A CQ SA SA WBW1 KNC
(288Mb) RSA SA CQ
B NC Q9 D9 SA NC KBW0 SA NC NC Q8
C NC NC D10 VSS SA NC SA VSS NC Q7 D8
D NC D11 Q10 VSS VSS VSS VSS VSS NC NC D7
E NC NC Q11 VDDQ VSS VSS VSS VDDQ NC D6 Q6
F NC Q12 D12 VDDQ VDD VSS VDD VDDQ NC NC Q5
G NC D13 Q13 VDDQ VDD VSS VDD VDDQ NC NC D5
H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ
J NC NC D14 VDDQ VDD VSS VDD VDDQ NC Q4 D4
K NC NC Q14 VDDQ VDD VSS VDD VDDQ NC D3 Q3
L NC Q15 D15 VDDQ VSS VSS VSS VDDQ NC NC Q2
M NC NC D16 VSS VSS VSS VSS VSS NC Q1 D2
N NC D17 Q16 VSS SA SA SA VSS NC NC D1
P NC NC Q17 SA SA QVLD SA SA NC D0 Q0
R TDO TCK SA SA SA ODT SA SA SA TMS TDI
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.
2. A7 is the expansion address.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 4/31 © 2011, GSI Technology
4M x 36 SigmaQuad-II+ SRAM—Top View
12345678910 11
A CQ NC
(288Mb) SA WBW2 KBW1 RSA SA CQ
B Q27 Q18 D18 SA BW3 KBW0 SA D17 Q17 Q8
C D27 Q28 D19 VSS SA NC SA VSS D16 Q7 D8
D D28 D20 Q19 VSS VSS VSS VSS VSS Q16 D15 D7
E Q29 D29 Q20 VDDQ VSS VSS VSS VDDQ Q15 D6 Q6
F Q30 Q21 D21 VDDQ VDD VSS VDD VDDQ D14 Q14 Q5
G D30 D22 Q22 VDDQ VDD VSS VDD VDDQ Q13 D13 D5
H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ
J D31 Q31 D23 VDDQ VDD VSS VDD VDDQ D12 Q4 D4
K Q32 D32 Q23 VDDQ VDD VSS VDD VDDQ Q12 D3 Q3
L Q33 Q24 D24 VDDQ VSS VSS VSS VDDQ D11 Q11 Q2
M D33 Q34 D25 VSS VSS VSS VSS VSS D10 Q1 D2
N D34 D26 Q25 VSS SA SA SA VSS Q10 D9 D1
P Q35 D35 Q26 SA SA QVLD SA SA Q9 D0 Q0
R TDO TCK SA SA SA ODT SA SA SA TMS TDI
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch
Notes:
3. BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35
4. Pin A2 is the Expansion Address.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 5/31 © 2011, GSI Technology
Pin Description Table
Symbol Description Type Comments
SA Synchronous Address Inputs Input
RSynchronous Read Input Active Low
WSynchronous Write Input Active Low
BW0BW3 Synchronous Byte Writes Input Active Low
NW0NW1 Synchronous Nybble Writes Input Active Low
(x8 only)
KInput Clock Input Active High
KInput Clock Input Active Low
TMS Test Mode Select Input
TDI Test Data Input Input
TCK Test Clock Input Input
TDO Test Data Output Output
VREF HSTL Input Reference Voltage Input
ZQ Output Impedance Matching Input Input
Qn Synchronous Data Outputs Output
Dn Synchronous Data Inputs Input
Doff Disable DLL when low Input Active Low
CQ Output Echo Clock Output
CQ Output Echo Clock Output
VDD Power Supply Supply 1.8 V Nominal
VDDQ Isolated Output Buffer Supply Supply 1.8 V or 1.5 V Nominal
VSS Power Supply: Ground Supply
QVLD Q Valid Output Output
ODT On-Die Termination Input Active High
NC No Connect
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 6/31 © 2011, GSI Technology
Notes:
1. NC = Not Connected to die or any other pin
2. When ZQ pin is directly connected to VDDQ, output impedance is set to minimum value and it cannot be connected to ground or left
unconnected.
3. K and K cannot be set to VREF voltage.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 7/31 © 2011, GSI Technology
Background
Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are
needed. Therefore, the SigmaQuad-II+ SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O
SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from
Separate I/O SRAMs can cut the RAM’s bandwidth in half.
SigmaQuad-II+ B4 SRAM DDR Read
The status of the Address Input, W, and R pins are sampled by the rising edges of K. W and R high causes chip disable. A Low on
the Read Enable pin, R, begins a read cycle. R is always ignored if the previous command loaded was a read command. Clocking
in a High on the Read Enable pin, R, begins a read port deselect cycle.
SRAM DDR Write
The status of the Address Input, W, and R pins are sampled by the rising edges of K. W and R High causes chip disable. A Low on
the Write Enable pin, W, and a High on the Read Enable pin, R, begins a write cycle. W is always ignored if the previous command
was a write command. Data is clocked in by the next rising edge of K, the rising edge of K after that, the next rising edge of K, and
finally by the next rising edge of K.
Special Functions
Byte Write and Nybble Write Control
Byte Write Enable pins are sampled at the same time that Data In is sampled. A High on the Byte Write Enable pin associated with
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leavi ng wh atever data may be
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven High or Low
during the data in sample times in a write sequence.
Each write enable command and write address loaded into the RAM provides the base address for a 4-beat data transfer. The x18
version of the RAM, for example, may write 72 bits in association with each address loaded. Any 9-bit byte may be masked in any
write sequence.
Nybble Write (4-bit) contro l is imp lemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble
Write Enable” and “NWx” may be substituted in all the discussion above.
Example x18 RAM Write Sequence using Byte Write Enables
Data In Sample Time BW0 BW1 D0–D8 D9–D17
Beat 1 0 1 Data In Don’t Care
Beat 2 1 0 Don’t Care Data In
Beat 3 0 0 Data In Data In
Beat 4 1 0 Don’t Care Data In
Resulting Write Operation
Byte 1
D0–D8
Byte 2
D9–D17
Byte 1
D0–D8
Byte 2
D9–D17
Byte 1
D0–D8
Byte 2
D9–D17
Byte 1
D0–D8
Byte 2
D9–D17
Written Unchanged Unchanged Written Written Written Unchanged Written
Beat 1 Beat 2 Beat 3 Beat 4
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 8/31 © 2011, GSI Technology
FLXDrive-II Output Driver Impedance Control
HSTL I/O SigmaQuad-II+ SRAMs are supplied with programmable im pedance output drivers. The ZQ pin must be connected to
VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is
between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is
implemented with discrete binary weighted impedance steps.
Input Termination Impedance Control
These SigmaQuad-II+ SRAMs are supplied with programmable input termination on Data (D), Byte Write (BW), and Clock (K/K)
input receivers. Input termination can be enabled or disabled via the ODT pin (6R). When the ODT pin is tied Low (or left
floating —the pin has a small pull-down resistor), input termination is disabled. When the ODT pin is tied High, input termination
is enabled. Termination impedance is programmed via the same RQ resistor (connected between the ZQ pin and VSS) used to
program output driver impedance, and is nominal ly RQ*0.6 Thevenin-equivalent when RQ is between 175Ω and 250Ω. Periodic
readjustment of the termination imp e dance occurs to compensate for drifts in supply voltage and temperature, in the same manner
as for driver impedance (see above).
Note:
When ODT = 1, Data (D), Byte Write (BW), and Clock (K, K) input terminati on is always enabled. Consequently, D, BW, K, K
inputs should always be driven High or Low; they should never be tri-stated (i.e., in a High-Z state). If the inputs are tri-stated, the
input termination will pull the signal to VDDQ/2 (i.e., to the switch point of the diff-amp receiver), which could cause the receiver
to enter a meta-stable state, resulting in the receiver consuming more power than it normally would. This could result in the
device’s operating currents being higher.
Separate I/O SigmaQuad II+ B4 SRAM Truth Table
Previous
Operation AR W Current
Operation D D D D Q Q Q Q
K
(tn-1)
K
(tn)
K
(tn)
K
(tn)
K
(tn)
K
(tn+1)
K
(tn+1½)
K
(tn+2)
K
(tn+2½)
K
(tn+2)
K
(tn+2½)
K
(tn+3)
K
(tn+3½)
Deselect X 1 1 Deselect X X Hi-Z Hi-Z
Write X 1 X Deselect D2 D3 Hi-Z Hi-Z
Read X X 1 Deselect X X Q2 Q3
Deselect V 1 0 Write D0 D1 D2 D3 Hi-Z Hi-Z
Deselect V 0 X Read X X Q0 Q1 Q2 Q3
Read V X 0 Write D0 D1 D2 D3 Q2 Q3
Write V 0 X Read D2 D3 Q0 Q1 Q2 Q3
Notes:
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”
2. “—” indicates that the input requirement or output state is determined by the next operation.
3. Q0, Q1, Q2, and Q3 indicate the first, second, third, and fourth pieces of output data transferred during Read operations.
4. D0, D1, D2, and D3 indicate the first, second, third, and fourth pieces of input data transferred during Write operations.
5. Users should not clock in metastable addresses.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 9/31 © 2011, GSI Technology
x36 Byte Write Enable (BWn) Truth Table
BW0 BW1 BW2 BW3 D0–D8 D9–D17 D18–D26 D27–D35
1 1 1 1 Don’t Care Don’t Care Don’t Care Don’t Care
0 1 1 1 Data In Don’t Care Don’t Care Don’t Care
1 0 1 1 Don’t Care Data In Don’t Care Don’t Care
0 0 1 1 Data In Data In Don’t Care Don’t Care
1 1 0 1 Don’t Care Don’t Care Data In Don’t Care
0 1 0 1 Data In Don’t Care Data In Don’t Care
1 0 0 1 Don’t Care Data In Data In Don’t Care
0 0 0 1 Data In Data In Data In Don’t Care
1 1 1 0 Don’t Care Don’t Care Don’t Care Data In
0 1 1 0 Data In Don’t Care Don’t Care Data In
1 0 1 0 Don’t Care Data In Don’t Care Data In
0 0 1 0 Data In Data In Don’t Care Data In
1 1 0 0 Don’t Care Don’t Care Data In Data In
0 1 0 0 Data In Don’t Care Data In Data In
1 0 0 0 Don’t Care Data In Data In Data In
0 0 0 0 Data In Data In Data In Data In
x18 Byte Write Enable (BWn) Truth Table
BW0 BW1 D0–D8 D9–D17
1 1 Don’t Care Don’t Care
0 1 Data In Don’t Care
1 0 Don’t Care Data In
0 0 Data In Data In
x09 Byte Write Enable (BWn) Truth Table
BW0 D0–D8
1Don’t Care
0Data In
1Don’t Care
0Data In
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 10/31 © 2011, GSI Technology
Nybble Write Clock Truth Table
NW NW NW NW Current Operation D D D D
K
(tn+1)
K
(tn+1½)
K
(tn+2)
K
(tn+2½)
K
(tn)
K
(tn+1)
K
(tn+1½)
K
(tn+2)
K
(tn+2½)
T T T T Write
Dx stored if NWn = 0 in all four data transfers D0 D2 D3 D4
T F F F Write
Dx stored if NWn = 0 in 1st data transfer only D0 X X X
F T F F Write
Dx stored if NWn = 0 in 2nd data transfer only XD1 X X
F F T F Write
Dx stored if NWn = 0 in 3rd data transfer only X X D2 X
F F F T Write
Dx stored if NWn = 0 in 4th data transfer only X X X D3
F F F F Write Abort
No Dx stored in any of the four data transfers X X X X
Notes:
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.
2. If one or more NWn = 0, then NW = “T”, else NW = “F”.
x8 Nybble Write Enable (NWn) Truth Table
NW0 NW1 D0–D3 D4–D7
1 1 Don’t Care Don’t Care
0 1 Data In Don’t Care
1 0 Don’t Care Data In
0 0 Data In Data In
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 11/31 © 2011, GSI Technology
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol Description Value Unit
VDD Voltage on VDD Pins –0.5 to 2.9 V
VDDQ Voltage in VDDQ Pins –0.5 to VDD V
VREF Voltage in VREF Pins –0.5 to VDDQ V
VI/O Voltage on I/O Pins –0.5 to VDDQ +0.5 ( 2.9 V max.) V
VIN Input Voltage (Address, Control, Data, Clock) –0.5 to VDDQ +0.5 ( 2.9 V max.) V
VTIN Input Voltage (TCK, TMS, TDI) –0.5 to VDDQ +0.5 ( 2.9 V max.) V
IIN Input Current on Any Pin +/–100 mA dc
IOUT Output Current on Any I/O Pin +/–100 mA dc
TJMaximum Junction Temperature 125 oC
TSTG Storage Temperature –55 to 125 oC
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect
reliability of this component.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 12/31 © 2011, GSI Technology
Recommended Operating Conditions
Power Supplies
Parameter Symbol Min. Typ. Max. Unit
Supply V oltage VDD 1.7 1.8 1.9 V
I/O Supply Voltag e VDDQ 1.4 VDD V
Reference Voltage VREF VDDQ/2 – 0.05 VDDQ/2 + 0.05 V
Note:
The power supplies need to be powered up simultaneo usly or in the following sequence: VDD, VDDQ, VREF, followed by signal inputs. The power
down sequence must be the reverse. VDDQ must not exceed VDD. For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up.
Operating Temperature
Parameter Symbol Min. Typ. Max. Unit
Junction Temperature
(Commercial Range Versions) TJ025 85 °C
Junction Temperature
(Industrial Range Versions)* TJ–40 25 100 °C
Note:
* The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications
quoted are evaluated for worst case in the temperature range marked on the device.
Thermal Impedance
Package Test PCB
Substrate
θ JA (C°/W)
Airflow = 0 m/s
θ JA (C°/W)
Airflow = 1 m/s
θ JA (C°/W)
Airflow = 2 m/s
θ JB (C°/W) θ JC (C°/W)
165 BGA 4-layer 16.4 13.4 12.4 8.6 1.2
Notes:
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.
2. Please refer to JEDEC standard JESD51-6.
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to
the PCB can result in cooling or heating of the RAM depending on PCB temperature.
HSTL I/O DC Input Characteristics
Parameter Symbol Min Max Units Notes
Input Reference Voltage VREF VDDQ /2 – 0.05 VDDQ /2 + 0.05 V
Input High Voltage VIH1 VREF + 0.1 VDDQ + 0.3 V 1
Input Low Voltage VIL1 –0.3 VREF – 0.1 V 1
Input High Voltage VIH2 0.7 * VDDQ VDDQ + 0.3 V2,3
Input Low Voltage VIL2 –0.3 0.3 * VDDQ V2,3
Notes:
1. Parameters apply to K, K, SA, D, R, W, BW during normal operation and JTAG boundary scan testing.
2. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.
3. Parameters apply to ZQ during JTAG boundary scan testing only.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 13/31 © 2011, GSI Technology
HSTL I/O AC Input Characteristics
Parameter Symbol Min Max Units Notes
Input Reference Voltage VREF VDDQ /2 – 0.08 VDDQ /2 + 0.08 V
Input High Voltage VIH1 VREF + 0.2 VDDQ + 0.5 V1,2,3
Input Low Voltage VIL1 –0.5 VREF – 0.2 V1,2,3
Input High Voltage VIH2 VDDQ – 0.2 VDDQ + 0.5 V4,5
Input Low Voltage VIL2 –0.5 0.2 V4,5
Notes:
1. VIH(MAX) and VIL(MIN) apply for pulse widths less than one-quarter of the cycle time.
2. Input rise and fall times must be a minimum of 1 V/ns, and within 10% of each other.
3. Parameters apply to K, K, SA, D, R, W, BW during normal operation and JTAG boundary scan testing.
4. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.
5. Parameters apply to ZQ during JTAG boundary scan testing only.
Capacitance
oC, f = 1 MHZ, VDD = 1.8 V)
Parameter Symbol Test conditions Typ. Max. Unit
Input Capacitance CIN VIN = 0 V 4 5 pF
Output Capacitance COUT VOUT = 0 V 6 7 pF
Clock Capacitance CCLK VIN = 0 V 5 6 pF
Note:
This parameter is sample tested.
AC Test Conditions
Parameter Conditions
Input high level 1.25
Input low level 0.25 V
Max. input slew rate 2 V/ns
Input reference level 0.75
Output reference level VDDQ/2
Note:
Test conditions as specified with output loading as shown unless otherwise noted.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 14/31 © 2011, GSI Technology
DQ
VT == 0.75 V
50Ω
RQ = 250 Ω (HSTL I/O)
VREF = 0.75 V
AC Test Load Diagram
Input and Output Leakage Characteristics
Parameter Symbol Test Conditions Min. Max
Input Leakage Current
(except mode pins) IIL VIN = 0 to VDD –2 uA 2 uA
Doff IILDOFF VIN = 0 to VDD –20 uA 2 uA
ODT IIL ODT VIN = 0 to VDD –2 uA 20 uA
Output Leakage Current IOL Output Disable,
VOUT = 0 to VDDQ –2 uA 2 uA
(TA = 25
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 15/31 © 2011, GSI Technology
Programmable Impedance HSTL Output Driver DC Electrical Characteristics
Parameter Symbol Min. Max. Units Notes
Output High Voltage VOH1 VDDQ/2 – 0.12 VDDQ/2 + 0.12 V 1, 3
Output Low Voltage VOL1 VDDQ/2 – 0.12 VDDQ/2 + 0.12 V 2, 3
Output High Voltage VOH2 VDDQ – 0.2 VDDQ V 4, 5
Output Low Voltage VOL2 Vss 0.2 V 4, 6
Notes:
1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω RQ 350Ω).
2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω RQ 350Ω).
3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V
4. 0Ω ≤ RQ ∞Ω
5. IOH = –1.0 mA
6. IOL = 1.0 mA
Operating Currents
Parameter Symbol Test Conditions
-450 -400 -350 -333 -300
Notes
to
70°C
40°
to
85°C
to
70°C
40°
to
85°C
to
70°C
40°
to
85°C
to
70°C
40°
to
85°C
to
70°C
40°
to
85°C
Operating
Current
(x36): DDR IDD VDD = Max, IOUT = 0 mA
Cycle Time tKHKH Min 1400
mA 1410
mA 1170
mA 1180
mA 1055
mA 1065
mA 1000
mA 1010
mA 915
mA 925
mA 2, 3
Operating
Current
(x18): DDR IDD VDD = Max, IOUT = 0 mA
Cycle Time tKHKH Min 1175
mA 1185
mA 1055
mA 1065m
A940
mA 950
mA 890
mA 900
mA 815
mA 825
mA 2, 3
Operating
Current
(x9): DDR IDD VDD = Max, IOUT = 0 mA
Cycle Time tKHKH Min 1175
mA 1185
mA 1055
mA 1065
mA 940
mA 950
mA 890
mA 900
mA 815
mA 825
mA 2, 3
Operating
Current
(x8): DDR IDD VDD = Max, IOUT = 0 mA
Cycle Time tKHKH Min 1175
mA 1185
mA 1055
mA 1065
mA 940
mA 950
mA 890
mA 900
mA 815
mA 825
mA 2, 3
Standby
Current
(NOP):
DDR
ISB1
Device deselected,
IOUT = 0 mA, f = Max,
All Inputs 0.2 V
or VDD – 0.2 V
330
mA 340
mA 315
mA 325
mA 295
mA 305
mA 275
mA 285
mA 265
mA 275
mA 2, 4
Notes:
1. Power measured with output pins floating.
2. Minimum cycle, IOUT = 0 mA
3. Operating current is calculated with 50% read cycles and 50% write cycles.
4. Standby Current is only after all pending read and write burst operations are completed.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 16/31 © 2011, GSI Technology
AC Electrical Characteristics
Parameter Symbol -450 -400 -350 -333 -300
Units
Notes
Min Max Min Max Min Max Min Max Min Max
Clock
K, K Clock Cycle Time tKHKH 2.2 8.4 2.5 8.4 2.86 8.4 3.0 8.4 3.3 8.4 ns
tK Variable tKVar 0.15 0.2 0.2 0.2 0.2 ns 4
K, K Clock High Pulse Width tKHKL 0.4 0.4 0.4 0.4 0.4 cycle
K, K Clock Low Pulse Width tKLKH 0.4 0.4 0.4 0.4 0.4 cycle
K to K High tKHKH 0.94 1.06 1.23 1.28 1.40 ns
K to K High tKHKH 0.94 1.06 1.23 1.28 1.40 ns
DLL Lock Time tKLock 2048 2048 2048 2048 2048 cycle 5
K Static to DLL reset tKReset 30 30 30 30 30 ns
Output Times
K, K Clock High to Data Output V alid tKHQV 0.45 0.45 0.45 0.45 0.45 ns
K, K Clock High to Data Output Hold tKHQX –0.45 –0.45 –0.45 –0.45 –0.45 ns
K, K Clock High to Echo Clock Valid tKHCQV 0.45 0.45 0.45 0.45 0.45 ns
K, K Clock High to Echo Clock Hold tKHCQX –0.45 –0.45 –0.45 –0.45 –0.45 ns
CQ, CQ High Output Valid tCQHQV 0.15 0.2 0.23 0.25 0.27 ns
CQ, CQ High Output Hold tCQHQX –0.15 –0.2 –0.23 –0.25 –0.27 ns
CQ, CQ High to QVLD tQVLD –0.15 0.15 –0.2 0.2 –0.23 0.23 –0.25 0.25 –0.27 0.27 ns
CQ Phase Distortion tCQHCQH
tCQHCQH 0.85 1.0 1.18 1.25 1.40 ns
K Clock High to Data Output High-Z tKHQZ 0.45 0.45 0.45 0.45 0.45 ns
K Clock High to Data Output Low-Z tKHQX1 –0.45 –0.45 –0.45 –0.45 –0.45 ns
Setup Times
Address Input Setup Time tAVKH 0.275 0.4 0.4 0.4 0.4 ns 1
Control Input Setup Ti me
(R, W) tIVKH 0.275 0.4 0.4 0.4 0.4 ns 2
Control Input Setup Ti me
(BWX)tIVKH 0.22 0.28 0.28 0.28 0.28 ns 3
Data Input Setup Time tDVKH 0.22 0.28 0.28 0.28 0.28 ns
Hold Times
Address Input Hold Time tKHAX 0.275 0.4 0.4 0.4 0.4 ns 1
Control Input Hold Time
(R, W) tKHIX 0.275 0.4 0.4 0.4 0.4 ns 2
Control Input Hold Time
(BWX)tKHIX 0.22 0.28 0.28 0.28 0.28 ns 3
Data Input Hold Time tKHDX 0.22 0.28 0.28 0.28 0.28 ns
Notes:
1. All Address inputs must meet the specified setup and hold times for all latching clock edges.
2. Control signals are R, W.
3. Control signals are BW0, BW1 and (BW2, BW3 for x36).
4. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
5. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 17/31 © 2011, GSI Technology
Read NOP CQ-Based Timing Diagram
Read A0 Write NOOP READ A1 WRITE NOOP NOOP NOOP NOOP
A0 A1
Q0 Q0+1 Q0+2 Q0+3 Q1 Q1+1 Q1+2 Q1+3
tQVLD
tCQLQX
tCQHQXtCQHQV
tCQLQV
tQVLD
tCQHQXtCQLQX
tCQLQV
tCQHQV
tKHIX
tIVKH
tKHIX
tIVKH
tKHAX
tAVKH
K
K
Addr
R
W
QVLD
Q
CQ
CQ
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 18/31 © 2011, GSI Technology
Read-Write CQ-Based Timing Diagram
Read A0 Write A1 READ A2 WRITE A3 NOOP NOOP NOOP
A0 A1 A2 A3
D1 D1+1 D1+2 D1+3 D3 D3+1 D3+2 D3+3
Q0 Q0+1 Q0+2 Q0+3 Q2 Q2+1 Q2+2 Q2+3
tQVLDtCQHQXtCQHQV
tCQLQXtCQLQV
tQVLD
tCQLQXtCQLQV
tCQHQX
tCQHQV
tKHDX
tDVKH
tKHDX
tDVKH
tKHIX
tIVKH
tKHIX
tIVKH
tKHIX
tIVKH
tKHIX
tIVKH
tKHAX
tAVKH
K
K
Addr
R
W
BWx
D
QVLD
Q
CQ
CQ
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 19/31 © 2011, GSI Technology
Write NOP Timing Diagram
Write A Read No-op Write B Read No-op NO-OP NO-OP NO-OP
A0 A1
D0 D0+1 D0+2 D0+3 D1 D1+1 D1+2 D1+3
tKHDX
tDVKH
tKHIX
tIVKH
tKHIX
tIVKH
tKHIX
tIVKH
tKHIX
tIVKH
tKHAX
tAVKH
K
K
Addr
R
W
BWx
D
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 20/31 © 2011, GSI Technology
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 21/31 © 2011, GSI Technology
JTAG Port Operation
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1 -1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output
drivers are powered by VDD.
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pul l-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO sh ould be left unconnected.
JTAG Pin Descriptions
Pin Pin Name I/O Description
TCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the
falling edge of TCK.
TMS Test Mode Select In The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state
machine. An undriven TMS input will produce the same result as a logic one input level.
TDI Test Data In In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP
Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input
level.
TDO Test Data Out Out Output that is active depending on the state of the TAP state machine. Output changes in response to the
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
JTAG Port Registers
Overview
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register th at captures serial inp ut data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instruct ions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is describ ed in the Scan Order Tab le followi ng. The Boundary Scan
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 22/31 © 2011, GSI Technology
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O rin g when the controll er is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
Instruction Register
ID Code Register
Boundary Scan Register
012
0
····
31 30 29 12
0
Bypass Register
TDI TDO
TMS
TCK Test Access Port (TAP) Controller
108
·
10
·
·· ······
Control Signals
·
JTAG TAP Block Diagram
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controll er is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
ID Register Contents
See BSDL Model
GSI Technology
JEDEC Vendor
ID Code
Presence Register
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X X X X X X X X X X X X X X X X X X X X 0 0 0 1 1 0 1 1 0 0 1 1
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 23/31 © 2011, GSI Technology
Tap Controller Instruction Set
Overview
There are two classes of instructions defined in the Standard 114 9.1-1990; the standard (Public) inst ructions, and device specific
(Private) instructions. Some Public instructions are man datory for 1149.1 compliance. Optional Public inst ructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR st ate. The TAP instruction set for this
device is listed in the following table.
Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
Test Logic Reset
Run Test Idle 0
0
1
0
1
1
0
0
1
1
1
0
0
1
1
0
00
0
1
1
0 0
110
0
0
1
111
JTAG Tap Controller State Diagram
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift- DR state. Thi s allows the board level scan path to be shortened to facili-
tate testing of other devices in the scan path.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public in struction. When the SAMPLE / PRELOAD instruction is
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 24/31 © 2011, GSI Technology
loaded in the Instruction Register, moving the TAP cont ro ller into th e Capture-DR state lo ads the data in the RAMs inp ut and
I/O buffers into the Boundary Scan Register . Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register . Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public in str ucti on. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override th e RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Bou ndary Scan Registers contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.
Alternately, the Boundary Scan Register may be loaded in para l lel usi n g t he EXTEST command. When the EXTEST instruc-
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-
ated.
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is mov ed to the Shift-DR
state.
JTAG TAP Instruction Set Summary
Instruction Code Description Notes
EXTEST 000 Places the Boundary Scan Register between TDI and TDO. 1
IDCODE 001 Preloads ID Register and places it between TDI and TDO. 1, 2
SAMPLE-Z 010 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.
Forces all RAM output drivers to High-Z. 1
GSI 011 GSI private instruction. 1
SAMPLE/PRELOAD 100 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. 1
GSI 101 GSI private instruction. 1
GSI 110 GSI private instruction. 1
BYPASS 111 Places Bypass Register between TDI and TDO. 1
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 25/31 © 2011, GSI Technology
JTAG Port Recommended Operating Conditions and DC Characteristics
Parameter Symbol Min. Max. Unit Notes
Test Port Input Low Voltage VILJ 0.3 0.3 * VDD V 1
Test Port Input High Voltage VIHJ 0.7 * VDD VDD +0.3 V 1
TMS, TCK and TDI Input Leakage Current IINHJ 300 1uA 2
TMS, TCK and TDI Input Leakage Current IINLJ 1100 uA 3
TDO Output Leakage Current IOLJ 1 1 uA 4
Test Port Output High Voltage VOHJ VDD – 0.2 V5, 6
Test Port Output Low Voltage VOLJ 0.2 V5, 7
Test Port Output CMOS High VOHJC VDD – 0.1 V5, 8
Test Port Output CMOS Low VOLJC 0.1 V5, 9
Notes:
1. Input Under/overshoot voltage must be 1 V < Vi < VDDn +1 V not to exceed 2.9 V maximum, with a pulse width not to exceed 20% tTKC.
2. VILJ VIN VDDn
3. 0 V VIN VILJn
4. Output Disable, VOUT = 0 to VDDn
5. The TDO output driver is served by the VDD supply.
6. IOHJ = 2 mA
7. IOLJ = + 2 mA
8. IOHJC = –100 uA
9. IOLJC = +100 uA
Notes:
1. Include scope and jig capacitance.
2. Test conditions as shown unless otherwise noted.
JTAG Port AC Test Conditions
Parameter Conditions
Input high level VDD – 0.2 V
Input low level 0.2 V
Input slew rate 1 V/ns
Input reference level VDD/2
Output reference level VDD/2
TDO
VDD/2
50Ω30pF*
JTAG Port AC Test Load
* Distributed Test Jig Capacitance
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 26/31 © 2011, GSI Technology
JTAG Port Timing Diagram
tTH
tTS
tTKQ
tTH
tTS
tTH
tTS
tTKLtTKLtTKHtTKHtTKCtTKC
TCK
TDI
TMS
TDO
Parallel SRAM input
JTAG Port AC Electrical Characteristics
Parameter Symbol Min Max Unit
TCK Cycle Time tTKC 50 ns
TCK Low to TDO Valid tTKQ 20 ns
TCK High Pulse Width tTKH 20 ns
TCK Low Pulse Width tTKL 20 ns
TDI & TMS Set Up Time tTS 10 ns
TDI & TMS Hold Time tTH 10 ns
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 27/31 © 2011, GSI Technology
Package Dimensions—165-Bump FPBGA (Package E)
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 28/31 © 2011, GSI Technology
Ordering Information—GSI SigmaQuad-II+ SRAM
Org Part Number1Type Package Speed
(MHz) TJ2
16M x 8 GS81302D07E-450 SigmaQuad-II+ B4 SRAM 165-bump BGA 400 C
16M x 8 GS81302D07E-400 SigmaQuad-II+ B4 SRAM 165-bump BGA 400 C
16M x 8 GS81302D07E-350 SigmaQuad-II+ B4 SRAM 165-bump BGA 350 C
16M x 8 GS81302D07E-333 SigmaQuad-II+ B4 SRAM 165-bump BGA 333 C
16M x 8 GS81302D07E-300 SigmaQuad-II+ B4 SRAM 165-bump BGA 300 C
16M x 8 GS81302D07E-450I SigmaQuad-II+ B4 SRAM 165-bump BGA 450 I
16M x 8 GS81302D07E-400I SigmaQuad-II+ B4 SRAM 165-bump BGA 400 I
16M x 8 GS81302D07E-350I SigmaQuad-II+ B4 SRAM 165-bump BGA 350 I
16M x 8 GS81302D07E-333I SigmaQuad-II+ B4 SRAM 165-bump BGA 333 I
16M x 8 GS81302D07E-300I SigmaQuad-II+ B4 SRAM 165-bump BGA 300 I
16M x 8 GS81302D07GE-450 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 C
16M x 8 GS81302D07GE-400 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 C
16M x 8 GS81302D07GE-350 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 C
16M x 8 GS81302D07GE-333 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 C
16M x 8 GS81302D07GE-300 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 C
16M x 8 GS81302D07GE-450I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 I
16M x 8 GS81302D07GE-400I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 I
16M x 8 GS81302D07GE-350I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 I
16M x 8 GS81302D07GE-333I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 I
16M x 9 GS81302D07GE-300I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 I
16M x 9 GS81302D10E-450 SigmaQuad-II+ B4 SRAM 165-bump BGA 450 C
16M x 9 GS81302D10E-400 SigmaQuad-II+ B4 SRAM 165-bump BGA 400 C
16M x 9 GS81302D10E-350 SigmaQuad-II+ B4 SRAM 165-bump BGA 350 C
16M x 9 GS81302D10E-333 SigmaQuad-II+ B4 SRAM 165-bump BGA 333 C
16M x 9 GS81302D07E-300 SigmaQuad-II+ B4 SRAM 165-bump BGA 300 C
16M x 9 GS81302D10E-450I SigmaQuad-II+ B4 SRAM 165-bump BGA 450 I
16M x 9 GS81302D10E-400I SigmaQuad-II+ B4 SRAM 165-bump BGA 400 I
16M x 9 GS81302D10E-350I SigmaQuad-II+ B4 SRAM 165-bump BGA 350 I
16M x 9 GS81302D10E-333I SigmaQuad-II+ B4 SRAM 165-bump BGA 333 I
16M x 9 GS81302D10E-300I SigmaQuad-II+ B4 SRAM 165-bump BGA 300 I
16M x 9 GS81302D10GE-450 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 C
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS81302DxxE-300T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 29/31 © 2011, GSI Technology
16M x 9 GS81302D10GE-400 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 C
16M x 9 GS81302D10GE-350 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 C
16M x 9 GS81302D10GE-333 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 C
16M x 9 GS81302D10GE-300 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 C
16M x 9 GS81302D10GE-450I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 I
16M x 9 GS81302D10GE-400I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 I
16M x 9 GS81302D10GE-350I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 I
16M x 9 GS81302D10GE-333I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 I
16M x 9 GS81302D10GE-300I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 I
8M x 18 GS81302D19E-450 SigmaQuad-II+ B4 SRAM 165-bump BGA 450 C
8M x 18 GS81302D19E-400 SigmaQuad-II+ B4 SRAM 165-bump BGA 400 C
8M x 18 GS81302D19E-350 SigmaQuad-II+ B4 SRAM 165-bump BGA 350 C
8M x 18 GS81302D19E-333 SigmaQuad-II+ B4 SRAM 165-bump BGA 333 C
8M x 18 GS81302D19E-300 SigmaQuad-II+ B4 SRAM 165-bump BGA 300 C
8M x 18 GS81302D19E-450I SigmaQuad-II+ B4 SRAM 165-bump BGA 450 I
8M x 18 GS81302D19E-400I SigmaQuad-II+ B4 SRAM 165-bump BGA 400 I
8M x 18 GS81302D19E-350I SigmaQuad-II+ B4 SRAM 165-bump BGA 350 I
8M x 18 GS81302D19E-333I SigmaQuad-II+ B4 SRAM 165-bump BGA 333 I
8M x 18 GS81302D19E-300I SigmaQuad-II+ B4 SRAM 165-bump BGA 300 I
8M x 18 GS81302D19AGE-450 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 C
8M x 18 GS81302D19AGE-400 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 C
8M x 18 GS81302D19AGE-350 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 C
8M x 18 GS81302D19GE-333 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 C
8M x 18 GS81302D19GE-300 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 C
8M x 18 GS81302D19GE-450I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 I
8M x 18 GS81302D19GE-400I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 I
8M x 18 GS81302D19GE-350I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 I
8M x 18 GS81302D19GE-333I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 I
8M x 18 GS81302D19GE-300I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 I
4M x 36 GS81302D37E-450 SigmaQuad-II+ B4 SRAM 165-bump BGA 450 C
4M x 36 GS81302D37E-400 SigmaQuad-II+ B4 SRAM 165-bump BGA 400 C
4M x 36 GS81302D37AE-350 SigmaQuad-II+ B4 SRAM 165-bump BGA 350 C
Ordering Information—GSI SigmaQuad-II+ SRAM (Continued)
Org Part Number1Type Package Speed
(MHz) TJ2
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS81302DxxE-300T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 30/31 © 2011, GSI Technology
4M x 36 GS81302D37E-333 SigmaQuad-II+ B4 SRAM 165-bump BGA 333 C
4M x 36 GS81302D37E-300 SigmaQuad-II+ B4 SRAM 165-bump BGA 300 C
4M x 36 GS81302D37E-450I SigmaQuad-II+ B4 SRAM 165-bump BGA 450 I
4M x 36 GS81302D37E-400I SigmaQuad-II+ B4 SRAM 165-bump BGA 400 I
4M x 36 GS81302D37E-350I SigmaQuad-II+ B4 SRAM 165-bump BGA 350 I
4M x 36 GS81302D37E-333I SigmaQuad-II+ B4 SRAM 165-bump BGA 333 I
4M x 36 GS81302D37E-300I SigmaQuad-II+ B4 SRAM 165-bump BGA 300 I
4M x 36 GS81302D37GE-450 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 C
4M x 36 GS81302D37GE-400 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 C
4M x 36 GS81302D37GE-350 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 C
4M x 36 GS81302D37GE-333 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 C
4M x 36 GS81302D37GE-300 SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 C
4M x 36 GS81302D37GE-450I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 450 I
4M x 36 GS81302D37GE-400I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 400 I
4M x 36 GS81302D37GE-350I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 350 I
4M x 36 GS81302D37GE-333I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 333 I
4M x 36 GS81302D37GE-300I SigmaQuad-II+ B4 SRAM RoHS-compliant 165-bump BGA 300 I
Ordering Information—GSI SigmaQuad-II+ SRAM (Continued)
Org Part Number1Type Package Speed
(MHz) TJ2
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS81302DxxE-300T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
GS81302D07/10/19/37E-450/400/350/333/300
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Rev: 1.04a 11/2011 31/31 © 2011, GSI Technology
SigmaQuad-II+ SRAM Revision History
File Name Format/Content Description of changes
81302D1937_r1 Creation of datasheet
GS81302D1937_r1.01 Content
• Revised Pinout
• Revised JTAG Port AC Test Condtions;
• Corrected Ordering Information Table
• Updated 165 BGA Package Drawing
• Revised AC Electrical Characteristics Table
• Added On-Die Termination feature
• (Rev1.01a: Corrected TM reference in page 1 banner)
GS81302D1937_r1.01 • Rev1.01 n/a for Q
81302D1937_r1.02
• Corrected QVLD typo in AC Char table
Added QVLD max numbers in AC Char table
(Rev1.02b: removed CQ reference from SAMPLE-Z section in
JTAG Tap Instruction Set Summary)
81302D1937_r1.03 Added 450 MHz speed bin
81302D1937_r1.04 Added Op Currents
Updated to MP status
(Rev1.04a: Editorial updates)