NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
NS16C2552/NS16C2752 Dual UART with 16-byte/64-byte FIFO's and up to 5 Mbit/s Data
Rate
Check for Samples: NS16C2552,NS16C2752
1FEATURES Multi-Function Output Allows More Package
Functions with Fewer I/O Pins
2 Dual Independent UART 44-PLCC or 48-TQFP Package
Up to 5 Mbits/s Data Transfer Rate
2.97 V to 5.50 V Operational Vcc DESCRIPTION
5 V Tolerant I/Os in the Entire Supply Voltage The NS16C2552 and NS16C2752 are dual channel
Range Universal Asynchronous Receiver/Transmitter
Industrial Temperature: -40°C to 85°C (DUART). The footprint and the functions are
compatible to the PC16552D, while new features are
Default Registers are Identical to the added to the UART device. These features include
PC16552D low voltage support, 5V tolerant inputs, enhanced
NS16C2552/NS16C2752 is Pin-to-Pin features, enhanced register set, and higher data rate.
Compatible to TI PC16552D, EXAR ST16C2552, The two serial channels are completely independent
XR16C2552, XR 16L2552, and Phillips of each other, except for a common CPU interface
SC16C2552B and crystal input. On power-up both channels are
NS16C2752 is Compatible to EXAR functionally identical to the PC16552D. Each channel
XR16L2752, and Register Compatible to can operate with on-chip transmitter and receiver
Phillips SC16C752 FIFO’s (in FIFO mode).
Auto Hardware Flow Control (Auto-CTS, Auto- In the FIFO mode each channel is capable of
RTS) buffering 16 bytes (for NS16C2552) or 64 bytes (for
NS16C2752) of data in both the transmitter and
Auto Software Flow Control (Xon, Xoff, and receiver. The receiver FIFO also has additional 3 bits
Xon-any) of error data per location. All FIFO control logic is on-
Fully Programmable Character Length (5, 6, 7, chip to minimize system software overhead and
or 8) with Even, Odd, or No Parity, Stop Bit maximize system efficiency.
Adds or Deletes Standard Asynchronous To improve the CPU processing bandwidth, the data
Communication Bits (Start, Stop, and Parity) to transfers between the DUART and the CPU can be
or from the Serial Data done using DMA controller. Signaling for DMA
Independently Controlled and Prioritized transfers is done through two pins per channel
Transmit and Receive Interrupts (TXRDY and RXRDY). The RXRDYfunction is
multiplexed on one pin with the OUT2 and BAUDOUT
Complete Line Status Reporting Capabilities functions. The configuration is through Alternate
Line Break Generation and Detection Function Register.
Internal Diagnostic Capabilities The fundamental function of the UART is converting
Loopback Controls for Communications between parallel and serial data. Serial-to-parallel
Link Fault Isolation conversion is done on the UART receiver and
parallel-to-serial conversion is done on the
Break, Parity, Overrun, Framing Error transmitter. The CPU can read the complete status of
Detection each channel at any time. Status information reported
Programmable Baud Generators Divide any includes the type and condition of the transfer
Input Clock by 1 to (216 - 1) and Generate the operations being performed by the DUART, as well
16 X clock as any error conditions (parity, overrun, framing, or
IrDA v1.0 Wireless Infrared Encoder/Decoder break interrupt).
DMA Operation (TXRDY/RXRDY)
Concurrent Write to DUART Internal Register
Channels 1 and 2
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2006–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
DESCRIPTION (CONTINUED)
The NS16C2552 and NS16C2752 include one programmable baud rate generator for each channel. Each baud
rate generator is capable of dividing the clock input by divisors of 1 to (216 - 1), and producing a 16X clock for
driving the internal transmitter logic and for receiver sampling circuitry. The NS16C2552 and NS16C2752 have
complete MODEM-control capability, and a processor-interrupt system. The interrupts can be programmed by the
user to minimize the processing required to handle the communications link.
System Block Diagram
Connection Diagrams
Figure 1. 44–PLCC Figure 2. 48–TQFP
See Package Number FN0044A See Package Number PFB0048A
2Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Pin Descriptions
The NS16C2552/NS16C2752 pins are classified into the following interface categories.
Bus Interface
Serial I/O Interface
Clock and Reset
Power supply and Ground pins
Serial channel number (1 or 2) is designated by a numerical suffix after each pin name. If a numerical suffix (1 or
2) is not associated with the pin name, the information applies to both channels.
The I/O types are as follows:
Type: I Input
Type: O Output
Type: IO_Z TRI-STATE I/O
PARALLEL BUS INTERFACE
Signal PLCC TQFP
Type Description
Name Pin # Pin #
D7 IO_Z 9 3 Data Bus:
D6 8 2 Data bus comprises eight TRI-STATE input/output lines. The bus provides bidirectional
D5 7 1 communications between the UART and the CPU. Data, control words, and status information
D4 6 48 are transferred via the D7-D0Data Bus.
D3 5 47
D2 4 46
D1 3 45
D0 2 44
A2 I 15 10 Register Addresses:
A1 14 9 Address signals connected to these 3 inputs select a DUART register for the CPU to read
A0 10 4 from or write to during data transfer. Table 1 shows the registers and their addresses. Note
that the state of the Divisor Latch Access Bit (DLAB), which is the most significant bit of the
Line Control Register, affects the selection of certain DUART registers. The DLAB must be
set high by the system software to access the Baud Generator Divisor Latches and the
Alternate Function Register.
CS I 18 13 Chip Select:
When CS is low, the chip is selected. This enables communication between the DUART and
the CPU. Valid chip select should stabilize according to the tAW parameter.
CHSL I 16 11 Channel Select:
CHSL directs the address and data information to the selected serial channel. (Table 1)
1 = channel 1 is selected.
0 = channel 2 is selected.
RD I 24 20 IO Read:
The register data is placed on the D0 - D7 on the falling edge of RD. The CPU can read
status information or data from the selected DUART register on the rising edge.
WR I 20 15 IO Write:
On the falling edge of WR, data is placed on the D0 - D7. On the rising edge, the data is
latched into the selected DUART register.
RXRDY1 O N/A 31 UART Receive-ready: The receiver DMA signaling is available through this pin which is a
RXRDY2 8 separate pin on the TQFP package, while on the PLCC package it is available through the MF
pins (19, 35). When operating in the FIFO mode, the CPU selects one of two types of DMA
transfer via FCR[3]. When operating in the 16450 Mode, only DMA mode 0 is available. Mode
0 supports single transfer DMA (and a transfer is usually made between CPU bus cycles).
Mode 1 supports multi-transfer DMA where multiple transfers are made continuously until the
Rx FIFO is empty. Details regarding the active and inactive states of this signal are described
in FIFO CONTROL REGISTER (FCR) and DMA OPERATION.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Signal PLCC TQFP
Type Description
Name Pin # Pin #
TXRDY1 O 1 43 UART Transmit-ready:
TXRDY2 32 28 Transmitter DMA signaling is available through this pin. When operating in the FIFO mode,
the CPU selects one of two types of DMA transfer via FCR[3]. When operating in the 16450
Mode, only DMA mode 0 is allowed. Mode 0 supports single transfer DMA (and a transfer is
usually made between CPU bus cycles). Mode 1 supports multi-transfer DMA where multiple
transfers are made continuously until the Tx FIFO is full. Details regarding the active and
inactive states of this signal are described in FIFO CONTROL REGISTER (FCR) and DMA
OPERATION.
INTR1 O 34 30 Interrupt Output:
INTR2 17 12 INTR goes high whenever any one of the following interrupt types has an active high
condition and is enabled via the IER: Receiver Error Flag; Received Data Available: time-out
(FIFO Mode only); Transmitter Holding Register Empty; MODEM Status; and hardware and
software flow control. The INTR signal is reset low upon the appropriate interrupt service or a
Master Reset operation.
SERIAL IO INTERFACE
Signal PLCC TQFP
Type Description
Name Pin # Pin #
SOUT1 O 38 35 UART Serial Data Out:
SOUT2 26 22 UART transmit data output or infrared data output. The SOUT signal is set to logic 1 upon reset or
idle in the UART mode when MCR[6]=0. The SOUT signal transitions to logic 0 (idle state of IrDA
mode) in the infrared mode when MCR[6]=1.
Note: SOUT1 and SOUT2 can not be reset to IrDA mode.
SIN1 I 39 36 UART Serial Data In:
SIN2 25 21 UART receive data input or infrared data input. The SIN should be idling in logic 1 in the UART
mode. The SIN should be idling in logic 0 in the infrared mode. The SIN should be pulled high
through a 10K resistor if not used.
RTS1 O 36 33 UART Request-to-send:
RTS2 23 18 When low, RTS informs the remote link partner that it is ready to receive data. The RTS output
signal can be set to an active low by writing “1” to MCR[1]. The RTS output can also be configured
in auto hardware flow control based on FIFO trigger level. This pin stays logic 1 upon reset or idle
(i.e., between data transfers). Loop mode operation holds this signal in its inactive state.
DTR1 O 37 34 UART Data-terminal-ready:
DTR2 27 23 When low, DTR informs the remote link partner that the UART is ready to establish a
communications link. The DTR output signal can be set to an active low by writing “1” to MCR[0].
This pin stays at logic 1 upon reset or idle. Loop mode operation holds this signal to its inactive
state.
CTS1 I 40 38 UART Clear-to-send:
CTS2 28 24 When low, CTS indicates that the remote link partner is ready to receive data. The CTS signal is a
modem status input and can be read for the appropriate channel in MSR[4]. This bit reflects the
complement of the CTS signal. MSR[0] indicates whether the CTS input has changed state since
the previous read of the MSR. CTS can also be configured to perform auto hardware flow control.
Note: Whenever the CTS bit of the MSR changes state, an interrupt is generated if the MODEM
Status Interrupt is enabled.
DSR1 I 41 39 UART Data-set-ready:
DSR2 29 25 When low, DSR indicates that the remote link partner is ready to establish the communications
link. The DSR signal is a MODEM status input and can be read for the appropriate channel in
MSR[5]. This bit reflects the complement of the DSR signal. MSR[1] indicates whether the DSR
input has changed state since the previous read of the MODEM Status Register.
Note: Whenever the DSR bit of the MSR changes state, an interrupt is generated if the MODEM
Status Interrupt is enabled.
DCD1 I 42 40 UART Data-carrier-detect:
DCD2 30 26 When low, DCD indicates that the data carrier has been detected by the remote link partner. The
DCD signal is a MODEM status input and can be read for the appropriate channel in MSR[7]. This
bit reflects the complement of the DCD signal. MSR[3] indicates if the DCD input has changed
state since the previous reading of the MODEM Status Register. DCD has no effect on the
receiver.
Note: Whenever the DCD bit of the MSR changes state, an interrupt is generated if the MODEM
Status Interrupt is enabled.
4Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Signal PLCC TQFP
Type Description
Name Pin # Pin #
RI1 I 43 41 UART Ring-detector:
RI2 31 27 When low, RI indicates that a telephone ringing is active. The RI signal is a MODEM status input
and can be read for the appropriate channel in MSR[6]. This bit reflects the complement of the RI
signal. MSR[2] indicates whether the RI input signal has changed state from low to high since the
previous reading of the MSR.
Note: Whenever the RI bit of the MSR changes from a high to a low state, an interrupt is
generated if the MODEM Status Interrupt is enabled.
MF1 O 35 32 UART Multi-function Pin:
MF2 19 14 MF can be programmed for any one of three signal functions OUT2, BAUDOUT or RXRDY. Bits 2
and 1 of the Alternate Function Register select which output signal will be present on this pin.
OUT2 is the default signal and it is selected immediately after master reset or power-up.
The OUT2 can be set active low by programming bit 3 (OUT2) of the MCR to a logic 1. A Master
Reset operation sets this signal to its inactive (high) state. Loop Mode holds this signal in its
inactive state.
The BAUDOUT signal is the 16X clock output that drives the transmitter and receiver logic of the
associated serial channel. This signal is the result of the XIN clock divided by the value in the
Divisor Latch Registers. The BAUDOUT signal for each channel is internally connected to provide
the receiver clock (formerly RCLK on the PC16550D).
The RXRDY signal can be used to request a DMA transfer of data from the RCVR FIFO. Details
regarding the active and inactive states of this signal are described in FIFO CONTROL
REGISTER (FCR) and DMA OPERATION.
CLOCK AND RESET
Signal Type PLCC TQFP Description
Name Pin # Pin #
XIN I 11 5 External Crystal Input:
XIN input is used in conjunction with XOUT to form a feedback circuit for the baud
rate generator's oscillator. If a clock signal is generated off-chip, then it should drive
the baud rate generator through this pin. Refer to CLOCK INPUT.
XOUT O 13 7 External Crystal Output:
XOUT output is used in conjunction with XIN to form a feedback circuit for the baud
rate generator's oscillator. If the clock signal is generated off-chip, then this pin is
unused. Refer to CLOCK INPUT.
MR I 21 16 Master Reset:
When MR input is high, it clears all the registers including Tx and Rx serial shift
registers (except the Receiver Buffer, Transmitter Holding, and Divisor Latches). The
output signals, such as OUT2, RTS, DTR, INTR, and SOUT are also affected by an
active MR input. (Refer to Table 26 and RESET).
POWER AND GROUND
Signal PLCC TQFP
Type Description
Name Pin # Pin #
VCC I 33 29 VCC:
44 42 +2.97V to +5.5V supply.
GND I 12 6 GND:
22 17 Device ground reference.
NC I N/A 19 No Connection:
37 These pins are only available on the TQFP package.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Register Set
There are two identical register sets, one for each channel, in the DUART. All register descriptions in this section
apply to the register sets in both channels.
To clarify the descriptions of transmission and receiving operations, the nomenclatures through out this
documentation are as follows:
Frame - Refers to all the bits between Start and Stop.
Character or word - The payload of a frame, between 5 to 8 bits.
“!=” - Not equal to.
Res - Reserved bit.
The address and control pins to register selection is summarized in Table 1.
Table 1. Basic Register Addresses
DLAB1 CHSL A2 A1 A0 Register
0 1 0 0 0 Receive Buffer (Read), Transmitter Holding Register (Write)
0 1 0 0 1 Interrupt Enable
0 1 0 1 0 Interrupt Identification (Read)
0 1 0 1 0 FIFO Control (Write)
C
Hx 1 0 1 1 Line Control
Ax 1 1 0 0 Modem Control
N
Nx 1 1 0 1 Line Status (Read)
Ex 1 1 1 0 Modem Status (Read)
L
1x 1 1 1 1 Scratchpad
1 1 0 0 0 Divisor Latch (Least Significant Byte)
1 1 0 0 1 Divisor Latch (Most Significant Byte)
1 1 0 1 0 Alternate Function
DLAB1 CHSL A2 A1 A0 Register
0 0 0 0 0 Receive Buffer (Read), Transmitter Holding Register (Write)
0 0 0 0 1 Interrupt Enable
0 0 0 1 0 Interrupt Identification (Read)
C0 0 0 1 0 FIFO Control (Write)
H
Ax 0 0 1 1 Line Control
Nx 0 1 0 0 Modem Control
Nx 0 1 0 1 Line Status (Read)
E
Lx 0 1 1 0 Modem Status (Read)
2x 0 1 1 1 Scratchpad
1 0 0 0 0 Divisor Latch (Least Significant Byte)
1 0 0 0 1 Divisor Latch (Most Significant Byte)
1 0 0 1 0 Alternate Function
6Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Table 2. NS16C2552 Register Summary
Reg RD/
Addr BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Comment
WR
A2-A0
UART 16C550 Compatible Registers (Default Values Upon Reset)
RBR R/W Data7 Data6 Data5 Data4 Data3 Data2 Data1 Data0
THR
0x0
Default X X X X X X X X
IER R/W CTS Int RTS Int Xoff Int Sleep Md Modem RX Line Tx Empty Rx Data
0x1 Ena Ena Ena Ena Stat Int Stat Int Int Ena Int Ena
Ena Ena
Default 0 0 0 0 0 0 0 0 LCR[7] = 0
IIR R FIFOs FIFOs INT Src INT Src INT Src INT Src INT Src INT Src
0x2 Ena Ena Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default 0 0 0 0 0 0 0 1
FCR W RX FIFO RX FIFO Tx FIFO Tx FIFO DMA Md Tx FIFO Rx FIFO FIFOs Ena
0x2 Trigger Trigger Trigger Trigger Ena Reset Reset
(2752) (2752)
Default 0 0 0 0 0 0 0 0
LCR R/W Divisor Set Tx Set Even Parity Stop Word Word
0x3 Ena Break Parity Parity Ena Bits Length Length
Bit 1 Bit 0
Default 0 0 0 0 0 0 0 0
MCR R/W Clk Div IR Md Xon Internal OUT2 OUT1 RTS DTR
0x4 Sel Ena Any Loopbk Output Output
Ena Control Control
Default 0 0 0 0 0 0 0 0
LSR R Rx FIFO THR & THR E Rx Rx Frame Rx Parity Rx Rx Data
0x5 Gbl Err TSR mpty Break Error Error Overrun Ready
Empty Error LCR !=
Default 0 1 1 0 0 0 0 0 0xBF
MSR R DCD RI DSR CTS Delta Delta Delta Delta
0x6 Input Input Input Input DCD RI DSR CTS
Default DCD RI DSR CTS 0 0 0 0
SCR R/W SCR SCR SCR SCR SCR SCR SCR SCR
0x7 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default 1 1 1 1 1 1 1 1
Baud Rate Generator Divisor
DLL R/W DLL DLL DLL DLL DLL DLL DLL DLL
0x0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default X X X X X X X X
DLM R/W DLM DLM DLM DLM DLM DLM DLM DLM LCR[7] = 1
0x1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 LCR !
Default X X X X X X X X 0xBF
AFR R/W Rsrvd Rsrvd Rsrvd Rsrvd Rsrvd RXRDY BAUDOUT Con-
current
0x2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Sel Sel WR
Default 0 0 0 0 0 0 0 0
DREV R ID ID ID ID DREV DREV DREV DREV LCR[7] = 1
0x0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 LCR !=
0xBF
DLL =
0x00
DLM =
0x00
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Table 2. NS16C2552 Register Summary (continued)
Reg RD/
Addr BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 Comment
WR
A2-A0
Enhanced Registers
EFR R/W Auto CTS Auto RTS Special IER[7:4] SW Flow SW Flow SW Flow SW Flow
0x2 Ena Ena Char Sel IIR[5:4] Control Bit Control Bit Control Bit Control Bit
FCR[5:4] 3 2 1 0
MCR[7:5]
Default 0 0 0 0 0 0 0 0
XON1 R/W XON1 XON1 XON1 XON1 XON1 XON1 XON1 XON1
0x4 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default 0 0 0 0 0 0 0 0
XON2 R/W XON2 XON2 XON2 XON2 XON2 XON2 XON2 XON2 LCR =
0xBF
0x5 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default 0 0 0 0 0 0 0 0
XOFF1 R/W XOFF1 XOFF1 XOFF1 XOFF1 XOFF1 XOFF1 XOFF1 XOFF1
0x6 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default 0 0 0 0 0 0 0 0
XOFF2 R/W XOFF2 XOFF2 XOFF2 XOFF2 XOFF2 XOFF2 XOFF2 XOFF2
0x7 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default 0 0 0 0 0 0 0 0
Legend:
Bit Name
Default Value
The Nomenclature of register descriptions:
Register name, address, register bit, and value example:
FCR 0x2.7:6 = 2’b11 - bits 6 and 7 of FCR are both 1.
Alternative description: FCR[7:6] = 2’b11.
‘b - binary number.
‘h - hex number.
0xNN - hex number.
n’bN - n is the number of bits; N is the bit value. Example 8’b01010111 = 8’h57 = 0x57.
RECEIVE BUFFER REGISTER (RBR)
The receiver section contains an 8-bit Receive Shift Register (RSR) and a 16 (or 64)-byte FIFO that can be
accessed through Receive Buffer Register (RBR).
Table 3. RBR (0x0)
Bit Bit Name R/W Def Description
7:0 RBR Data R Receive Buffer Register
0xXX Rx FIFO data.
Note: This register value does not change upon MR reset.
8Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
TRANSMIT HOLDING REGISTER (THR)
This register holds the byte-wide transmit data (THR). This is a write-only register.
Table 4. THR (0x0)
Bit Bit Name R/W Def Description
7:0 THR Data W Transmit Holding Register
0xXX Tx FIFO data.
Note: This register value does not change upon MR reset.
INTERRUPT ENABLE REGISTER (IER)
This register enables eight types of interrupts for the corresponding serial channel. Each interrupt source can
individually activate the interrupt (INTR) output signal. Setting the bits of the IER to a logic 1 unmasks the
selected interrupt(s). Similarly, the interrupt can be masked off by resetting bits 0 through 7 of the Interrupt
Enable Register (IER). If not desired to be used, masking an interrupt source prevents it from going active in the
IIR and activating the INTR output signal. While interrupt sources are masked off, all system functions including
the Line Status and MODEM Status still operate in their normal manner. Table 5 shows the contents of the IER.
Table 5. IER (0x1)
R/W
Bit Bit Name Description
Def
7 CTS Int Ena R/W CTS Input Interrupt Enable
0 1 = Enable the CTS to generate interrupt at low to high transition. Requires EFR 0x2.4 = 1.
0 = Disable the CTS interrupt (default).
6 RTS Int Ena R/W RTS Output Interrupt Enable
0 1 = Enable the RTS to generate interrupt at low to high transition. Requires EFR 0x2.4 = 1.
0 = Disable the RTS interrupt (default).
5 Xoff Int Ena R/W Xoff Input Interrupt Enable
0 1 = Enable the software flow control character Xoff to generate interrupt. Requires EFR 0x2.4 = 1.
0 = Disable the Xoff interrupt (default).
4 Sleep Mode R/W Sleep Mode Enable
Ena 0 1 = Enable the Sleep Mode for the respective channel. Requires EFR 0x2.4 = 1.
0 = Disable Sleep Mode (default).
3 Mdm Stat Int R/W Modem Status Interrupt Enable
Ena 0 1 = Enable the Modem Status Register interrupt.
0 = Disable the Modem Status Register interrupt (default).
2 Rx Line Stat Int R/W Receive Line Status Interrupt Enable
Ena 0 An interrupt can be generated when any of the LSR bits 0x5.4:1=1. LSR 0x5.1 generates an interrupt as
soon as an overflow frame is received. LSR 0x5.4:2 generate an interrupt when there is read error from
FIFO.
1 = Enable the receive line status interrupt.
0 = Disable the receive line status interrupt (default).
1 Tx_Empty Int R/W Tx Holding Reg Empty Interrupt Enable
Ena 0 1 = Enable the interrupt when Tx Holding Register is empty.
0 = Disable the Tx Holding Register from generating interrupt (default).
0 Rx_DV Int Ena R/W Rx Data Available Interrupt Enable
0 1 = Enable the Received Data Available and FIFO mode time-out interrupt.
0 = Disable the Received Data Available interrupt (default).
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
INTERRUPT IDENTIFICATION REGISTER (IIR)
In order to provide minimum software overhead during data word transfers, each serial channel of the DUART
prioritizes interrupts into seven levels and records these levels in the Interrupt Identification Register. The seven
levels of interrupt conditions are listed in Table 7. When the CPU reads the IIR, the associated DUART serial
channel freezes all interrupts and indicates the highest priority pending interrupt to the CPU. While this CPU
access is occurring, the associated DUART serial channel records new interrupts, but does not change its
current indication until the access is complete. Table 6 shows the contents of the IIR.
Table 6. IIR (0x2)
R/W
Bit Bit Name Description
Def
7:6 FIFOs Ena R FIFO Enable Status (FCR 0x2.0)
00 2'b11 = Tx and Rx FIFOs enabled.
2'b00 = Tx and Rx FIFOs disabled (default).
5 INT Src 5 R RTS/CTS Interrupt Status
0 1 = RTS or CTS changed state from low to high.
0 = No change on RTS or CTS from low to high (default).
4 INT Src 4 R Xoff or Special Character Interrupt Status
0 1 = Receiver detected Xoff or special character.
0 = No Xoff character match (default).
3:1 INT Src 3:1 R Interrupt Source Status
000 These three bits indicates the source of a pending interrupt. Refer to Table 7 for interrupt
source and priority.
0 INT Src 0 R Interrupt Status
1 1 = No interrupt is pending (default).
0 = An interrupt is pending and the IIR content may be used as a pointer for the interrupt
service routine.
Table 7. Interrupt Source and Priority Level
IIR Register Status Bits
Priority Interrupt Source
Level 5 4 3 2 1 0
1 0 0 0 1 1 0 LSR
2 0 0 1 1 0 0 RXRDY (Receive data time-out)
3 0 0 0 1 0 0 RXRDY (Receive data ready)
4 0 0 0 0 1 0 TXRDY (Transmit data ready)
5 0 0 0 0 0 0 MSR (Modem Status Register)
6 0 1 0 0 0 0 RXRDY (Received Xoff or special character)
7 1 0 0 0 0 0 CTS, RTS change state from low to high
- 0 0 0 0 0 1 None (default)
Table 8. Interrupt Sources and Clearing
Interrupt Interrupt Sources Interrupt Clearing
Generation
LSR Any bit is set in LSR[4:1] (Break Interrupt, Framing, Rx Read LSR register. (Interrupt flags and tags are not cleared until
parity, or overrun error). the character(s) that generated the interrupt(s) has/have been
emptied or cleared.)
Rx Trigger Rx FIFO reached trigger level. Read FIFO data until FIFO pointer falls below the trigger level.
RXRDY Timer Time-out in 4-word time plus 12-bit delay time. Read RBR.
TXRDY THR empty. Read from IIR register or a write to THR.
MSR Any state change in MSR[3:0]. Read from MSR register.
10 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Table 8. Interrupt Sources and Clearing (continued)
Interrupt Interrupt Sources Interrupt Clearing
Generation
Xoff or Special Detection of Xoff or Special character. Read from IIR register or reception of Xon character (or
character reception of next character if interrupt is caused by Special
character).
CTS Input pin toggles from logic 0 to 1 during CTS auto flow Read from IIR or MSR.
control mode.
RTS Output pin toggles from logic 0 to 1 during RTS auto Read from IIR or MSR.
flow control mode.
FIFO CONTROL REGISTER (FCR)
This is a write only register at the same location as the IIR (the IIR is a read only register). This register is used
to enable the FIFOs, clear the FIFOs, set the FIFO trigger level, and select the DMA mode.
Mode 0: Mode 0 allows for single transfer in each DMA cycle. When in the 16450 Mode (FCR[0] = 0) or in the
FIFO Mode (FCR[0] = 1, FCR[3] = 0) and there is at least one character in the RCVR FIFO or RCVR Buffer
Register, the RXRDY pin will go active low. After going active, the RXRDY pin will be inactive when there is no
character in the FIFO or Buffer Register.
On The Tx side, TXRDY is active low when XMIT FIFO or XMIT Holding Register is empty. TXRDY returns to
high when XMIT FIFO or XMIT holding register is not empty.
Mode 1: Mode 1 allows for multiple transfer or multi-character burst transfer. In the FIFO Mode (FCR[0] = 1,
FCR[3] = 1) when the number of characters in the RCVR FIFO equals the trigger threshold level or timeout
occurs, the RXRDY goes active low to initiate DMA transfer request. The RXRDY returns high when RCVR FIFO
becomes empty.
In the FIFO Mode (FCR[0] = 1, FCR[3] = 1) when there is (1) no character in the XMIT FIFO for NS16C2552, or
(2) empty spaces exceed the threshold level for NS16C2752; the TXRDY pin will go active low. This pin will
become inactive when the XMIT FIFO is completely full.
Table 9. FCR (0x2)
R/W
Bit Bit Name Description
Def
7:6 Rx FIFO W Rx FIFO Trigger Select
Trig 00 FCR[6] and FCR[7] are used to designate the interrupt trigger level. When the number of characters in the
Select RCVR FIFO equals the designated interrupt trigger level, a Received Data Available Interrupt is activated.
This interrupt must be enabled by IER[0]=1.
For NS16C2552 with 16-byte FIFO:
FCR[7] FCR[6] Rx FIFO Trigger Level
1 1 = 14
1 0 = 8
0 1 = 4
0 0 = 1 (Default)
For NS16C2752 with 64-byte FIFO:
FCR[7] FCR[6] Rx FIFO Trigger Level
1 1 = 60
1 0 = 56
0 1 = 16
0 0 = 8 (Default)
Refer to SOFTWARE XON/XOFF FLOW CONTROL and DMA OPERATION for software flow control using
FIFO trigger level.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Table 9. FCR (0x2) (continued)
R/W
Bit Bit Name Description
Def
5:4 Tx FIFO W Transmit FIFO Trigger Level Selection
Trig Level 00 The transmit FIFO trigger threshold selection is only available in NS16C2752. When enabled, a transmit
Sel interrupt is generated and TXRDY is asserted when the number of empty spaces in the FIFO exceeds the
threshold level.
For NS16C2752 with 64-byte FIFO:
FCR[5] FCR[4] Tx FIFO Trigger Level
1 1 = 56
1 0 = 32
0 1 = 16
0 0 = 8 (Default)
Refer to TRANSMIT OPERATION and DMA OPERATION for transmit FIFO descriptions.
These two bits are reserved in NS16C2552 and have no impact when they are written to.
3 DMA W DMA Mode Select
Mode 0 This bit controls the RXRDY and TXRDY initiated DMA transfer mode.
Select 1 = DMA Mode 1. Allows block transfers. Requires FCR 0x2.0=1 (FIFO mode).
0 = DMA Mode 0 (default). Single transfers.
2 Tx FIFO W Transmit FIFO Reset
Reset 0 This bit is only active when FCR bit 0 = 1.
1 = Reset XMIT FIFO pointers and all bytes in the XMIT FIFO (the Tx shift register is not cleared and is
cleared by MR reset). This bit has the self-clearing capability.
0 = No impact (default).
Note: Reset pointer will cause the characters in Tx FIFO to be lost.
1 Rx FIFO W Receive FIFO Reset
Reset 0 This bit is only active when FCR bit 0 = 1.
1 = Reset RCVR FIFO pointers and all bytes in the RCVR FIFO (the Rx shift register is not cleared and is
cleared by MR reset). This bit has the self-clearing capability.
0 = No impact (default).
Note: Reset pointer will cause the characters in Rx FIFO to be lost.
0 Tx and Rx W Transmit and Receive FIFO Enable
FIFO 0 1 = Enable transmit and receive FIFO. This bit must be set before other FCR bits are written. Otherwise, the
Enable FCR bits can not be programmed.
0 = Disable transmit and receive FIFO (default).
LINE CONTROL REGISTER (LCR)
The system programmer specifies the format of the asynchronous data communications exchange and sets the
Divisor Latch Access bit via the Line Control Register (LCR). This is a read and write register.
Table 10. LCR (0x3)
Bit Name R/W
Bit Description
Default Def
7 Divisor Latch R/W Divisor Latch Access Bit (DLAB)
Ena 0 This bit must be set (logic 1) to access the Divisor Latches of the Baud Generator and the Alternate
Function Register during a read or write operation. It must be cleared (logic 0) to access any other
register.
1 = Enable access to the Divisor Latches of the Baud Generator and the AFR.
0 = Enable access to other registers (default).
12 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Table 10. LCR (0x3) (continued)
Bit Name R/W
Bit Description
Default Def
6 Tx Break Ena R/W Set Tx Break Enable
0 This bit is the Break Control bit. It causes a break condition to be transmitted to the receiving UART.
The Break Control bit acts only on SOUT and has no effect on the transmitter logic.
1 = Serial output (SOUT) is forced to the Spacing State (break state, logic 0).
0 = The break transmission is disabled (default).
Note: This feature enables the CPU to alert a terminal in a computer communication system. If the
following sequence is followed, no erroneous or extraneous character will be transmitted because of
the break.
1. Load an all 0s, pad character, in response to THRE.
2. Set break after the next THRE.
3. Wait for the transmitter to be idle, (Transmitter Empty TEMT = 1), and clear break when normal
transmission has to be restored.
During the break, the transmitter can be used as a character timer to establish the break duration.
During the break state, any word left in THR will be shifted out of the register but blocked by SOUT
as forced to break state. This word will be lost.
5 Forced R/W Tx and Rx Forced Parity Select
Parity Sel 0 When parity is enabled, this bit selects the forced parity format.
LCR[5] LCR[4] LCR[3] Parity Select
1 1 1 Force parity to space = 0
1 0 1 Force parity to mark = 1
0 1 1 Even parity
0 0 1 Odd parity
X X 0 No parity
4 Even/Odd R/W Tx and Rx Even/Odd Parity Select
Parity Sel 0 This bit is only effective when LCR[3]=1. This bit selects even or odd parity format.
1 = Odd parity is transmitted or checked.
0 = Even parity is transmitted or checked (default).
3 Tx/Rx Parity R/W Tx and Rx Parity Enable
Ena 0 This bit enables parity generation.
1 = A parity is generated during the data transmission. The receiver checks for parity error of the
data received.
0 = No parity (default).
2 Tx/Rx Stop-bit R/W Tx and Rx Stop-bit Length Select
Length Sel 0 This bit specifies the number of Stop bits transmitted with each serial character.
LCR[2] Word Length Sel Stop-bit Length
1 6,7,8 = 2
1 5 = 1.5
0 5,6,7,8 = 1(Default)
Stop-bit length is measured in bit time.
1:0 Tx/Rx Word R/W Tx and Rx Word Length Select
Length Sel 0 These two bits specify the word length to be transmitted or received.
LCR[1] LCR[0] Word Length
1 1 = 8
1 0 = 7
0 1 = 6
0 0 = 5 (Default)
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
MODEM CONTROL REGISTER (MCR)
This register controls the interface with the MODEM or data set (or a peripheral device emulating a MODEM).
There is a clock divider for each channel. Each is capable of taking a common clock input from DC to 80 MHz
and dividing the clock frequency by 1 (default) or 4 depending on the MCR[7] value. The clock divider and the
internal clock division flow is shown in Figure 3.
Figure 3. Internal Clock Dividers
Table 11. MCR (0x4)
R/W
Bit Bit Name Description
Def
7 Clk Divider R/W Clock Divider Select
Sel 0 This bit selects the clock divider from crystal or oscillator input. The divider output connects to the Baud
Rate Generator.
1 = Divide XIN frequency by 4.
0 = Divide XIN frequency by 1 (default).
6 IR Mode Sel R/W Infrared Encoder/Decoder Select
0 This bit selects standard modem or IrDA interface.
1 = Infrared IrDA Tx/Rx. The data input and output levels complies to the IrDA infrared interface. The Tx
output is at logic 0 during the idle state.
0 = Standard modem Tx/Rx (default).
5 Xon-Any R/W Xon-Any Enable
Ena 0 This bit enables Xon-Any feature.
1 = Enable Xon-Any function. When Xon/Xoff flow control is enabled, the transmission resumes when
any character is received. The received character is loaded into the Rx FIFO except for Xon or Xoff
characters.
0 = Disable Xon-Any function (default).
4 Internal R/W Internal Loopback Enable
Loopback 0 This bit provides a local loopback feature for diagnostic testing of the associated serial channel. (Refer
Ena to INTERNAL LOOPBACK MODE and Figure 15.)
1 = the transmitter Serial Output (SOUT) is set to the Marking (logic 1) state; the receiver Serial Input
(SIN) is disconnected; the output of the Transmitter Shift Register is looped back into the Receiver Shift
Register input; the four MODEM Control inputs (DSR, CTS, RI, and DCD) are disconnected; the four
MODEM Control outputs (DTR, RTS, OUT1 and OUT2) are internally connected to the four MODEM
Control inputs; and the MODEM Control output pins are forced to their inactive state (high). In this
diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to
verify transmit and receive data paths of the DUART. In this diagnostic mode, the receiver and
transmitter interrupts are fully operational. Their sources are external to the part. The MODEM Control
Interrupts are also operational, but the interrupt sources are now the lower four bits of the MODEM
Control Register instead of the four MODEM Control inputs. The interrupts are still controlled by the
Interrupt Ena
0 = Normal Tx/Rx operation; loopback disabled (default).
14 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Table 11. MCR (0x4) (continued)
R/W
Bit Bit Name Description
Def
3 OUT2 R/W Output2
0 This bit controls the Output 2 (OUT2) signal, which is an auxiliary user-designated output. Bit 3 affects
the OUT2 pin as described below. The function of this bit is multiplexed on a single output pin with two
other functions: BAUDOUT and RXDRY. The OUT2 function is the default function of the pin after a
master reset. See ALTERNATE FUNCTION REGISTER (AFR) for more information about selecting one
of these 3 pin functions.
1 = Force OUT2 to logic 0.
0 = Force OUT2 to logic 1 (default).
2 OUT1 R/W Output1
0 In normal operation, OUT1 bit is not available as an output.
In internal Loopback Mode (MCR 0x4.4=1) this bit controls the state of the modem input RI in the MSR
bit 6.
1 = MSR 0x06.6 is at logic 1.
0 = MSR 0x06.6 is at logic 0.
1 RTS Output R/W RTS Output Control
0 This bit controls the RTS pin. If modem interface is not used, this output is used as a general purpose
output.
1 = Force RTS pin to logic 0.
0 = Force RTS pin to logic 1(default).
0 DTR Output R/W DTR Output Control
0 This bit controls the DTR pin. If modem interface is not used, this output is used as a general purpose
output.
1 = Force DTR pin to logic 0.
0 = Force DTR pin to logic 1(default).
LINE STATUS REGISTER (LSR)
This register provides status information to the CPU concerning the data transfer.
Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the
corresponding conditions are detected and the interrupt is enabled.
Table 12. LSR (0x5)
R/W
Bit Bit Name Description
Def
7 Rx FIFO Err R Rx FIFO Data Error
0 This bit is a global Rx FIFO error flag. In the 16450 Mode this bit is 0.
1 = A sum of all error bits in the Rx FIFO. These errors include parity, framing, and break indication
in the FIFO data.
0 = No Rx FIFO error (default).
Note: The Line Status Register is intended for read operations only. Writing to this register is not
recommended as this operation is only used for factory testing.
6 THR & TSR R THR and TSR Empty
Empty 1 This bit is the Transmitter Empty (TEMT) flag.
1 = Whenever the Transmitter Holding Register (THR) (or the Tx FIFO in FIFO mode) and the
Transmitter Shift Register (TSR) are both empty (default).
0 = Whenever either the THR (or the Tx FIFO in FIFO mode) or the TSR contains a data word.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Table 12. LSR (0x5) (continued)
R/W
Bit Bit Name Description
Def
5 THR Empty R THR Empty
1 This bit is the Transmitter Holding Register Empty (THRE) flag. In the 16450 mode bit 5 indicates
that the associated serial channel is ready to accept a new character for transmission. In addition,
this bit causes the DUART to issue an interrupt to the CPU when the Transmit Holding Register
Empty interrupt enable is set.
1 = In 16450 mode, whenever a character is transferred from the Transmitter Holding Register into
the Transmitter Shift Register, or in FIFO mode when the Tx FIFO is empty (default).
0 = In 16450 mode, this bit is reset to logic 0 concurrently with the loading of the Transmitter Holding
Register by the CPU. In FIFO mode, it is cleared when at least 1 byte is written to the Tx FIFO.
4 Rx Break R Receive Break Interrupt Indicator
Interrupt 0 This bit is the Break Interrupt (BI) indicator.
1 = Whenever the received data input is held in the Spacing (logic 0) state for longer than a full
frame transmission time (that is, the total time of Start bit + data bits + Parity + Stop bits).
0 = No break condition (default).
This bit is reset to 0 whenever the CPU reads the contents of the Line Status Register or when the
next valid character is loaded into the Receiver Buffer Register.
In the FIFO Mode this condition is associated with the particular character in the FIFO it applies to. It
is revealed to the CPU when its associated character is at the top of the FIFO. When break occurs
only one zero character is loaded into the FIFO. The next character transfer is enabled after SIN
goes to the Marking (logic 1) state and receives the next valid start bit.
3 Rx Frame Error R Framing Error Indicator
0 This bit is the Framing Error (FE) indicator.
1= Received character did not have a valid Stop bit when the serial channel detects a logic 0 during
the first Stop bit time.
0 = No frame error (default).
The bit is reset to 0 whenever the CPU reads the contents of the Line Status Register or when the
next valid character is loaded into the Receiver Buffer Register. In the FIFO Mode this error is
associated with the particular character in the FIFO it applies to. This error is revealed to the CPU
when its associated character is at the top of the FIFO. The serial channel will try to resynchronize
after a framing error. This assumes that the framing error was due to the next start bit, so it samples
this start bit twice and then takes in the data.
2 Rx Parity Error R Parity Error Indicator
0 This bit is the Parity Error (PE) indicator.
1 = Received data word does not have the correct even or odd parity, as selected by the even-
parity-select bit during the character Stop bit time when the character has a parity error.
0 = No parity error (default).
This bit is reset to a logic 0 whenever the CPU reads the contents of the Line Status Register or
when the next valid character is loaded into the Receiver Buffer Register. In the FIFO mode this
error is associated with the particular character in the FIFO it applies to. This error is revealed to the
host when its associated character is at the top of the FIFO.
1 Rx Overrun R Overrun Error Indicator
Error 0 This bit is the Overrun Error (OE) indicator.
This bit indicates that the next character received was transferred into the Receiver Buffer Register
before the CPU could read the previously received character. This transfer overwrites the previous
character. It is reset whenever the CPU reads the contents of the Line Status Register. If the FIFO
mode data continues to fill the FIFO beyond the trigger level, an overrun error will occur only after
the FIFO is full and the next character has been completely received in the shift register. OE is
indicated to the CPU as soon as it happens. The character in the shift register can be overwritten,
but it is not transferred to the FIFO.
1 = Set to a logic 1 during the character stop bit time when the overrun condition exists.
0 = No overrun error (default).
0 Rx Data Ready R Receiver Data Indicator
0 This bit is the receiver Data Ready (DR) indicator.
1 = Whenever a complete incoming character has been received and transferred into the Receiver
Buffer Register (RBR) or the FIFO. Bit 0 is reset by reading all of the data in the RBR or the FIFO.
0 = No receive data available (default).
16 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
MODEM STATUS REGISTER (MSR)
This register provides the current state of the control lines from the MODEM (or peripheral device) to the CPU. In
addition to this current-state information, four bits of the MODEM Status Register provide change information.
The latter bits are set to a logic 1 whenever a control input from the MODEM changes state. They are reset to
logic 0 whenever the CPU reads the MODEM Status Register.
Table 13. MSR (0x6)
R/W
Bit Bit Name Description
Def
7 DCD Input R DCD Input Status
Status DCD This bit is the complement of the Data Carrier Detect (DCD) input. In the loopback mode, this bit is
equivalent to the OUT2 of the MCR.
1 = DCD input is logic 0.
0 = DCD input is logic 1.
6 RI Input R RI Input Status
Status RI This bit is the complement of the Ring Indicator (RI) input. In the loopback mode, this bit is equivalent to
OUT1 of the MCR.
1 = RI input is logic 0.
0 = RI input is logic 1.
5 DSR Input R DSR Input Status
Status DSR This bit is the complement of the Data Set Ready (DSR) input. In the loopback mode, this bit is
equivalent to DTR in the MCR.
1 = DSR input is logic 0.
0 = DSR input is logic 1.
4 CTS Input R CTS Input Status
Status CTS This bit is the complement of the Clear to Send (CTS) input. In the loopback mode, this bit is equivalent
to RTS in the MCR.
1 = CTS input is logic 0.
0 = CTS input is logic 1.
3 DDCD Input R Delta DCD Input Indicator
Status 0 This bit is the Delta Data Carrier Detect (DDCD) indicator. Bit 3 indicates that the DCD input has changed
state since the last read by the host.
1 = DCD input has changed state.
0 = DCD input has no state change (default).
Note: Whenever bit 0, 1, 2, or 3 is set to logic 1, a MODEM Status Interrupt is generated.
2 Falling Edge R Falling Edge RI Indicator
RI Indicator 0 This bit is theFalling Edge of Ring Indicator (TERI) detector. Bit 2 indicates that the RI input pin has
changed from a logic 0 to 1 since the last read by the host.
1 = RI input has changed state from logic 0 to 1.
0 = RI input has no state change from 0 to 1 (default).
1 DDSR Input R Delta DSR Input Indicator
Indicator 0 This bit is the Delta Data Set Ready (DDSR) indicator. Bit 1 indicates that the DSR input pin has changed
state since the last read by the host.
1 = DSR input has changed state from logic 0 to 1.
0 = DSR input has no state change from 0 to 1 (default).
0 DCTS Input R Delta CTS Input Indicator
Indicator 0 This bit is the Delta Clear to Send (DCTS) indicator. Bit 0 indicates that the CTS input pin has changed
state since the last time it was read by the host.
1 = CTS input has changed state.
0 = CTS input has no state change (default).
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
SCRATCHPAD REGISTER (SCR)
This 8-bit Read/Write Register does not control the serial channel in any way. It is intended as a Scratchpad
Register to be used by the programmer to hold data temporarily.
Table 14. SCR (0x7)
R/W
Bit Bit Name Description
Def
7:0 SCR Data R/W Scratchpad Register
0xFF This 8-bit register does not control the UART in any way. It is intended as a scratchpad register
to be used by the programmer to hold temporary data.
PROGRAMMABLE BAUD GENERATOR
The NS16C2552 contains two independently programmable Baud Generators. Each is capable of taking
prescaler input and dividing it by any divisor from 1 to 216 -1 (Figure 3). The highest input clock frequency
recommended with a divisor = 1 is 80MHz. The output frequency of the Baud Generator is 16 X the baud rate,
[divisor # = (frequency input) / (baud rate X 16)]. The output of each Baud Generator drives the transmitter and
receiver sections of the associated serial channel. Two 8-bit latches per channel store the divisor in a 16-bit
binary format. These Divisor Latches must be loaded during initialization to ensure proper operation of the Baud
Generator. Upon loading either of the Divisor Latches, a 16-bit Baud Counter is loaded.
Table 15. DLL (0x0, LCR[7] = 1, LCR != 0xBF)
R/W
Bit Bit Name Description
Def
7:0 DLL Data R/W Divisor Latch LSB
0xXX This 8-bit register holds the least significant byte of the 16-bit baud rate generator divisor.
This register value does not change upon MR reset.
Table 16. DLM (0x1, LCR[7] = 1, LCR != 0xBF)
R/W
Bit Bit Name Description
Def
7:0 DLM Data R/W Divisor Latch MSB
0xXX This 8-bit register holds the most significant byte of the 16-bit baud rate generator divisor.
This register value does not change upon MR reset.
Table 17 provides decimal divisors to use with crystal frequencies of 1.8432 MHz, 3.072 MHz and 18.432 MHz.
For baud rates of 38400 and below, the error obtained is minimal. The accuracy of the desired baud rate is
dependent on the crystal frequency chosen. Using a divisor of zero is not recommended.
Table 17. Baud Rate Generation Using 1.8432 MHz Clock with MCR[7]=0
Output Data Output 16x Clock User 16x Clock DLM Program DLL Program Data Rate
Baud Rate Divider (dec) Divisor (hex) Value (hex) Value (hex) Error (%)
50 2304 900 09 00 0
75 1536 600 06 00 0
150 768 300 03 00 0
300 384 180 01 80 0
600 192 C0 00 C0 0
1200 96 60 00 60 0
2400 48 30 00 30 0
4800 24 18 00 18 0
9600 12 0C 00 0C 0
19,200 6 06 00 06 0
38,400 3 03 00 03 0
115,200 1 01 00 01 0
18 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
NOTE
For baud rates of 250k, 300k, 375k, 500k, 750k and 1.5M using a 24MHz crystal causes
minimal error.
ALTERNATE FUNCTION REGISTER (AFR)
This is a read/write register used to select simultaneous write to both register sets and alter MF pin functions.
Table 18. AFR (0x2, LCR[7] = 1, LCR != 0xBF)
Bit Name R/W
Bit Description
Default Def
7:3 Reserved Reserved
These bits are set to a logic 0.
2:1 MF Output Sel R/W Multi-function Pin Output Select
0 These select the output signal that will be present on the multi-function pin, MF. These bits are
individually programmable for each channel, so that different signals can be selected on each
channel.
AFR[2] AFR[1] MF Function
1 1 = Reserved (MF output is forced logic 1)
1 0 = RXRDY
0 1 = BAUDOUT
0 0 = OUT2 (default)
0 Concurrent Write R/W Concurrent Write Enable
Ena 0 1 = CPU can write concurrently to the same register in both registers sets. This function is
intended to reduce the DUART initialization time. It can be used by a CPU when both channels
are initialized to the same state. The CPU can set or clear this bit by accessing either register set.
When this bit is set the channel select pin still selects the channel to be accessed during read
operations. Setting or clearing this bit has no effect on read operations.
The user should ensure that the DLAB bit LCR[7] of both channels are in the same state before
executing a concurrent write to register addresses 0, 1 and 2.
0 = No concurrent write (default). (No impact on read operations.)
DEVICE IDENTIFICATION REGISTER (ID)
The device ID for NS16C2552 is 0x03. DLL and DLM should be initialized to 0x00 before reading the ID register.
This is a read-only register.
Table 19. DREV (0x0, LCR[7]=1, LCR!=0xBF, DLL=DLM=0x00)
R/W
Bit Bit Name Description
Def
7:4 Device ID R Device ID
Value = 0x3 for NS16C2552; 0x2 for NS16C2752
3:0 Device Rev R Device Revision
Value = 0x1.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
ENHANCED FEATURE REGISTER (EFR)
This register enables the enhanced features of the device.
Table 20. EFR (0x2, LCR = 0xBF)
Bit Name R/W
Bit Description
Default Def
7 Auto CTS R/W Automatic CTS Flow Control Enable
Flow Ctl 0 1 = Enable automatic CTS flow control. Data transmission stops when CTS input deasserts to logic 1. Data
Ena transmission resumes when CTS returns to logic 0.
0 = Automatic CTS flow control is disabled (Default)
6 Auto RTS R/W Automatic RTS Flow Control Enable
Flow Ctl 0 By setting EFR[6] to logic 1, RTS output can be used for hardware flow control. When Auto RTS is selected,
Ena an interrupt is generated when the receive FIFO is filled to the programmed trigger level and RTS de-asserts
to a logic 1. The RTS output must be logic 0 before the auto RTS can take effect. RTS pin functions as a
general purpose output when hardware flow control is disabled.
1 = Enable automatic RTS flow control.
0 = Automatic RTS flow control is disabled (Default)
5 Special R/W Special Character Detect Enable
Char Det 0 1 = Special character detect enabled. The UART compares each incoming received character with data in
Ena Xoff-2 register (0x4, LCR = 0xBF). If a match is found, the received data will be transferred to FIFO and
IIR[4] is set to indicate the detection of a special character if IER[5] = 1. Bit 0 corresponds with the LSB of
the received character. If flow control is set for comparing Xon1, Xoff1 (EFR[1:0] = 10) then flow control and
special character work normally; If flow control is set for comparing Xon2, Xoff2 (EFR[1:0]=01) then flow
control works normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special
character interrupt if IER[5] is enabled. Special character interrupts are cleared automatically after the next
received character.
0 = Special character detect disabled. (Default)
4 Enhanced R/W Enhanced Function Bits Enable
Fun Bit Ena 0 This bit enables IER[7:4], FCR[5:4], and MCR [7:5] to be changed. After changing the enhanced bits, EFR[4]
can be cleared to logic 0 to latch in the updated values. EFR[4] allows compatibility with the legacy mode
software by disabling alteration of the enhanced functions.
1 = Enables writing to IER[7:4], FCR[5:4], and MCR [7:5].
0 = Disable writing to IER[7:4], FCR[5:4], MCR [7:5] and, latching in updated value. Upon reset, IER[7:4],
IIR[5:4], FCR[5:4], and MCR [7:5] are cleared to logic 0. (Default)
3:0 Software R/W Software Flow Control Select
Flow 0 Single character and dual sequential character software flow control is supported. Combinations of software
Control Sel flow control can be selected by programming the bits.
EFR[3] EFR[2] EFR[1] EFR[0] Rx Flow Control
1 1 1 1 Rx compares Xon1 & Xon2, Xoff1 & Xoff2
1 0 1 1 Rx compares Xon1 or Xon2, Xoff1 or Xoff2
0 1 1 1 Rx compares Xon1 or Xon2, Xoff1 or Xoff2
0 0 1 1 Rx compares Xon1 & Xon2, Xoff1 & Xoff2
X X 1 0 Rx compares Xon1, Xoff1
X X 0 1 Rx compares Xon2, Xoff2
X X 0 0 No Rx flow control
0 0 0 0 No Tx & Rx flow control (default)
EFR[3] EFR[2] EFR[1] EFR[0] Tx Flow Control
1 1 X X Tx Xon1 and Xon2, Xoff1 and Xoff2
1 0 X X Tx Xon1, Xoff1
0 1 X X Tx Xon2, Xoff2
0 0 X X No Tx flow control
20 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
SOFTWARE FLOW CONTROL REGISTERS (SFR)
The following four registers are used as programmable software flow control characters.
Table 21. Xon1 (0x4, LCR=0xBF)
R/W
Bit Bit Name Description
Def
7:0 Xon1 Data R/W Xon1 Data
0
Table 22. Xon2 (0x5, LCR=0xBF)
R/W
Bit Bit Name Description
Def
7:0 Xon2 Data R/W Xon2 Data
0
Table 23. Xoff1 (0x6, LCR=0xBF)
R/W
Bit Bit Name Description
Def
7:0 Xoff1 Data R/W Xoff1 Data
0
Table 24. Xoff2 (0x7, LCR=0xBF)
R/W
Bit Bit Name Description
Def
7:0 Xoff2 Data R/W Xoff2 Data
0
Operation and Configuration
CLOCK INPUT
The NS16C2552/2752 has an on-chip oscillator that accepts standard crystal with parallel resonant and
fundamental frequency. The generated clock is supplied to both UART channels with the capability range from
DC to 24 MHz. The frequency of the clock oscillator is divided by 16 internally, combined with an on-chip
programmable clock divider providing the baud rate for data transmission. The divisor is 16-bit with MSB byte in
DLM and LSB byte in DLL. The divisor calculation is shown in PROGRAMMABLE BAUD GENERATOR.
The external oscillator circuitry requires two load capacitors, a parallel resistor, and an optional damping resistor.
The oscillator circuitry is shown in Figure 4.
Figure 4. Crystal Oscillator Circuitry
The requirement of the crystal is listed in Table 25.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Table 25. Crystal Component Requirement
Parameter Value
Crystal Frequency Range <= 24 MHz
Crystal Type Parallel resonant
Fundamental
C1 & C2, Load Capacitance 10 - 22 pF
ESR 20 - 120
Frequency Stability 0 to 70°C 100 ppm
The capacitors C1 and C2 are used to adjust the load capacitance on these pins. The total load capacitance (C1,
C2 and crystal) must be within a certain range for the NS16C2552/2752 to function properly. The parallel resistor
Rp and load resistor Rs are recommended by some crystal vendors. Refer to the vendor’s crystal datasheet for
details.
Since each channel has a separate programmable clock divider, each channel can have a different baud rate.
The oscillator provides clock to the internal data transmission circuitry, writing and reading from the parallel bus
is not affected by the oscillator frequency. For circuits not using the external crystal, the clock input is XIN
(Figure 5.)
Figure 5. Clock Input Circuitry
RESET
The NS16C2552/2752 has an on-chip power-on reset that can accommodate a slow risetime power supply. The
power-on reset has a circuit that holds the device in reset state for 223 XIN clock cycles. For example, if the
crystal frequency is 24MHz, the reset time will be 223 X 1/(24 X 106) = 349ms. An external active high reset can
also be applied. The default output state of the device is listed in Table 26.
Table 26. Output State After Reset
Output Reset State
SOUT1, SOUT2 Logic 1
OUT2 Logic 1
RTS1, RTS2 Logic 1
DTR1, DTR2 Logic 1
INTR1, INTR2 Logic 0
TXRDY1, TXRDY2 Logic 0
22 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
RECEIVER OPERATION
Each serial channel consists of an 8-bit Receive Shift Register (RSR) and a 16 (or 64) -byte by 11-bit wide
Receive FIFO. The RSR contains a 8-bit Receive Buffer Register (RBR) that is part of the Receive FIFO. The 11-
bit wide FIFO contains an 8-bit data field and a 3-bit error flag field. The RSR uses 16X clock as timing source.
(Figure 6.)
Figure 6. Rx FIFO Mode
The RSR operation is described as follows:
1. At the falling edge of the start bit, an internal timer starts counting at 16X clock. At 8th 16X clock,
approximately the middle of the start bit, the logic level is sampled. If a logic 0 is detected the start bit is
validated.
2. The validation logic continues to detect the remaining data bits and stop bit to ensure the correct framing. If
an error is detected, it is reported in LSR[4:2].
3. The data frame is then loaded into the RBR and the Receive FIFO pointer is incremented. The error tags are
updated to reflect the status of the character data in RBR. The data ready bit (LSR[0]) is set as soon as a
character is transferred from the shift register to the Receive FIFO. It is reset when the Receive FIFO is
empty.
Receive in FIFO Mode
Interrupt Mode
In the FIFO mode, FCR[0]=1, RBR can be configured to generate an interrupt after the FIFO pointer reaches a
trigger threshold. The interrupt causes CPU host to fetch the Rx character in the FIFO in a burst mode and the
transfer number is set by the trigger level. The interrupt is cleared as soon as the number of bytes in the Rx FIFO
drops below the trigger level. The Rx FIFO continues to receive new characters, and the interrupt is re-asserted
when the character reaches the trigger threshold.
To ensure the data is delivered to the host, a receive data ready time-out interrupt IIR[3] is generated when RBR
data is not fetched by the host in 4-word length long (defined in LCR[1:0]) plus 12 bit-time. The RBR interrupt is
enabled through IER[0]. This is equivalent of 3.6 to 4.7 frame-time.
The maximum time between a received character and a time-out interrupt will be 147 ms at 300 baud with an 8-
bit receive word.
Character delay time is calculated by using the BAUDOUT signal as a clock signal. This makes the delay
proportional to the baud rate.
Time-out interrupt is cleared and the timer is reset when the CPU reads one character from the Receive FIFO.
When the time-out interrupt is inactive the time-out timer is reset after a new character is received or after the
CPU reads the Receive FIFO.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 23
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
After the first character is read by the host, the next character is loaded into the RBR and the error flags are
loaded into LSR[4:2].
DMA Mode
In the FIFO mode, the RXRDY asserts when the character in the Rx FIFO reaches the trigger threshold or
timeout occurs. The RXRDY initiates DMA transfer in a burst mode. The RXRDY deasserts when the Rx FIFO is
completely emptied and the DMA transfer stops (Figure 7.)
Figure 7. RXRDY in DMA Mode 1
Receive in non-FIFO Mode
Interrupt Mode
In the non-FIFO mode, FCR[0]=0, RBR can be configured to generate an IIR Receive Data Available interrupt
IIR[2] immediately after the first byte is received. Upon interrupt, the CPU host reads the RBR and clears the
interrupt. The interrupt is reasserted when the next character is received. (Figure 8.)
Figure 8. Rx Non-FIFO Mode
DMA Mode
In the non-FIFO mode, the presence of a received character in RBR causes the assertion of RXRDY at which
point DMA transfer can be initiated. Upon transfer completion RXRDY is deasserted. DMA transfer stops and
awaits for the next character. (Figure 9.)
24 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Figure 9. RXRDY in DMA Mode 0
Receive Hardware Flow Control
On the line side, RTS signal provides automatic flow control to prevent data overflow in the Receive FIFO. The
RTS is used to request remote unit to suspend or resume data transmission. This feature is enabled to suit
specific application. The RTS flow control can be enabled by the following steps:
Enable auto-RTS flow control EFR[6]=1.
The auto-RTS function is initiated by asserting RTS output pin, MCR[1]=1.
The auto-RTS assertion and deassertion timing is based upon the Rx FIFO trigger level (Table 27 and Table 28).
Receive Flow Control Interrupt
To enable auto RTS interrupt:
Enable auto RTS flow control EFR[6]=1.
Enable RTS interrupt IER[6]=1.
An interrupt is generated when RTS pin makes a transition from logic 0 to 1; IIR[5] is set to logic 1.
The receive data ready interrupt (IIR[2]) generation timing is based upon the Rx FIFO trigger level (Table 27 and
Table 28).
Table 27. Auto-RTS HW Flow Control on NS16C2552
Rx Trigger INTR Pin RTS RTS
Level Activation Desertion Assertion
1 1 2 0
4 4 8 1
8 8 14 4
14 14 14 8
Table 28. Auto-RTS HW flow Control on NS16C2752
Rx Trigger INTR Pin RTS RTS
Level Activation Desertion Assertion
8 8 16 0
16 16 56 8
56 56 60 16
60 60 60 56
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 25
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
TRANSMIT OPERATION
Each serial channel consists of an 8-bit Transmit Shift Register (TSR) and a 16-byte (or 64-byte) Transmit FIFO.
The Transmit FIFO includes a 8-bit Transmit Holding Register (THR). The TSR shifts data out at the 16X internal
clock. A bit time is 16 clock periods. The transmitter begins with a start-bit followed by data bits, asserts parity-bit
if enabled, and adds the stop-bit(s). The FIFO and TSR status is reported in the LSR[6:5].
The THR is an 8-bit register providing a data interface to the host processor. The host writes transmit data to the
THR. The THR is the Transmit FIFO input register in FIFO operation. The FIFO operation can be enabled by
FCR[0]=1. During the FIFO operation, the FIFO pointer is incremented pointing to the next FIFO location when a
data word is written into the THR.
Transmit in FIFO Mode
Interrupt mode
In the NS16C2752 FIFO mode (FCR[0]=1), when the Tx FIFO empty spaces exceed the threshold level the THR
empty flag is set (LSR[5]=1). The THR empty flag generates a TXRDY interrupt (IIR[1]=1) when the transmit
empty interrupt is enabled (IER[1]=1). Writing to THR or reading from IIR deasserts the interrupt.
There is a two-character hysteresis in interrupt generation. The host needs to service the interrupt by writing at
least two characters into the Tx FIFO before the next interrupt can be generated.
The NS16C2552 does not have the FIFO threshold level control. The interrrupt is generated when the FIFO is
completely empty.
Figure 10. Tx FIFO Mode
DMA mode
To fully take advantage of the FIFO buffer, the UART is best operating in DMA mode 1 (FCR[3]=1) when
characters are transferred in bursts. The NS16C2752 has a Tx FIFO threshold level control in register FCR[5:4].
The threshold level sets the number of empty spaces in the FIFO and determines when the TXRDY is asserted.
If the number of empty spaces in the FIFO exceeds the threshold, the TXRDY asserts initiating DMA transfers to
fill the Tx FIFO. When the empty spaces in the Tx FIFO becomes zero (i.e., FIFO is full), the TXRDY deasserts
and the DMA transfer stops. TXRDY reasserts when empty space exceeds the set threshold, starting a new
DMA transfer cycle. (Figure 11.)
The NS16C2552 does not have the FIFO threshold level control. The TXRDY is asserted when FIFO is empty
and deasserted when FIFO is full. It is equivalent of having trigger threshold set at 16 empty spaces.
26 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Figure 11. TXRDY in DMA Mode 1
Transmit in non-FIFO Mode
Interrupt Mode
The THR empty flag LSR[5] is set when a data word is transferred to the TSR. THR flag can generate a transmit
empty interrupt IIR[1] enabled by IER[1]. The TSR flag LSR[6] is set when TSR becomes empty. The host CPU
may write one character into the THR and wait for the next IIR[1] interrupt. (Figure 12.)
Figure 12. Tx Non-FIFO Mode
DMA mode
In the DMA single transfer (mode 0), TXRDY asserts when FIFO is empty initiating one DMA transfer and
deasserts when a character is written into the FIFO. (Figure 13.)
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 27
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Figure 13. TXRDY in DMA Mode 0
Transmit Hardware Flow Control
CTS is a flow control input used to prevent remote receiver FIFO data overflow. The CTS input is monitored to
suspend/resume the local transmitter. The automatic CTS flow control can be enabled to suit specific application.
Enable auto CTS flow control EFR[7]=1.
Transmit Flow Control Interrupt
Enable auto CTS flow control EFR[7]=1.
Enable CTS interrupt IER[7]=1.
An interrupt is generated when CTS pin is de-asserted (logic 1). IIR[5] is set to logic 1. The transmitter suspends
transmission as soon as the stop bit is shifted out. Transmission is resumed after the CTS pin is asserted logic 0,
indicating remote receiver is ready to accept data word.
SOFTWARE XON/XOFF FLOW CONTROL
Software flow control uses programmed Xon or Xoff characters to enable the transmit/receive flow control. The
receiver compares one or two sequentially received data words. If the received character(s) match the
programmed values, the transmitter suspends operation as soon as the current transmitting frame is completed.
When a match occurs, the Xoff (if enabled via IER[5]) flag is set and an interrupt is generated. Following a
transmission suspension, the UART monitors the receive data stream for an Xon character. When a match is
found, the transmission resumes and the IIR[4] flag clears.
Upon reset, the Xon/Xoff characters are cleared to logic 0. The user may write any Xon/Xoff value desired for
software flow control. Different conditions can be set to detect Xon/Xoff characters and suspend/resume
transmissions. When double 8-bit Xon/Xoff characters are selected, the UART compares two consecutively
received characters with two software flow control 8-bit values (Xon1, Xon2, Xoff1, and Xoff2) and controls
transmission accordingly. Under the above described flow control mechanisms, flow control characters are not
placed in the user accessible Rx data buffer or FIFO.
During the flow control operation, when Receive FIFO pointer reaches the upper trigger level, the UART
automatically transmits Xoff1 and Xoff 2 messages via the serial TX line output to the remote modem. When
Receive FIFO pointer position matches the lower trigger level, the UART automatically transmits Xon1 and Xon2
characters.
Care should be taken when designing the software flow control section of the driver. In the case where a local
UART is transmitting and the remote UART initiates flow control, an Xoff character is sent by the remote UART.
Upon receipt the local UART ceases to transmit until such time as the remote UART FIFO has been drained
sufficiently and it signals that it can accept further data by sending an Xon character to the local UART.
28 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
There is a corner case in which the receipt of an Xoff by the local UART can occur just after it has sent the last
character of a data transfer and is ready to close the transmission. If in so doing the driver disables the local
UART, it may not receive the corresponding XON and thus can remain in a flow-controlled state. This will persist
even when the UART is re-enabled for a succeeding transmission creating a lock-up situation.
To resolve this lock-up issue, the driver should implement a delay before shutting down the local transmitter at
the end of a data transfer. This delay time should be equal to the transmission time of four characters PLUS the
latency required to drain the RX FIFO on the remote side of the connection. This will allow the remote modem to
send an Xon character and for it to be received before the local transmitter shuts down.
Table 29. Xon/Xoff SW Flow Control on NS16C2552
Rx Trigge INTR Pin Xoff Char Xon Char
Level Activation Sent Sent
1 1 1 0
4 4 4 1
8 8 8 4
14 14 14 8
Table 30. Xon/Xoff SW Flow Control on NS16C2752
Rx Trigger INTR Pin Xoff Char Xon Char
Level Activation Sent Sent
8 8 8 0
16 16 16 8
56 56 56 16
60 60 60 56
SPECIAL CHARACTER DETECT
UART can detect an 8-bit special character if EFR[5]=1. When special character detect mode is enabled, the
UART compares each received character with Xoff2. If a match is found, Xoff2 is loaded into the FIFO along with
the normal received data and IIR[4] is flagged to logic 1.
The Xon and Xoff word length is programmable between 5 and 8 bits depending on LCR[1:0] with the LSB bit
mapped to bit 0. The same word length is used for special character comparison.
SLEEP MODE
To reduce power consumption, NS16C2552/2752 has a per channel sleep mode when channel is not being
used. The sleep mode requires following conditions to be met:
Sleep mode of the respective channel is enabled (IER[4]=1).
No pending interrupt for the respective channel (IIR[0]=1).
Divisor is a non-zero value (DLL or DLM != 0x00).
Modem inputs are not toggling (MSR[3:0]=0).
Receiver input is idling at logic 1.
The channel wakes up from sleep mode and returns to normal operation when one of the following conditions is
met:
Start bit falling edge (logic 1 to 0) is detected on receiver.
A character is loaded into the THR or Tx FIFO
A state change on any of the modem interface inputs, DTS, DSR, DCD, and RI.
Following the awakening, the channel can fall back into the sleep mode when all interrupt conditions are serviced
and cleared. If channel is awakened by the modem line inputs, reading the MSR resets the line inputs.
Following the awakening, the interrupts from the respective channel has to be serviced and cleared before re-
entering into the sleep mode. The NS16C2552/2752 sleep mode can be disabled by IER[4]=0.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 29
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
INTERNAL LOOPBACK MODE
NS16C2552 incorporates internal loopback path for design validation and diagnostic trouble shooting. In the
loopback mode, the transmitted data is looped from the transmit shift register output to the receive shift register
input internally. The system receives its transmitted data. The loopback mode is enabled by MCR[4]=1
(Figure 15).
In the loopback mode, Tx pin is held at logic 1 or mark condition while RTS and DTR are de-asserted and CTS,
DRS, CD, and RI inputs are ignored. Note that Rx input must be held at logic 1 during the loopback test. This is
to prevent false start bit detection upon exiting the loopback mode. RTS and CTS are disabled during the test.
DMA OPERATION
LSR[6:5] provide status of the transmit FIFO and LSR[0] provides the receive FIFO status. User may read the
LSR status bits to initiate and stop data transfers.
More efficient direct memory access (DMA) transfers can be setup using the RXRDY and TXRDY signals. The
DMA transfers are asserted between the CPU cycles and saves CPU processing bandwidth. In mode 0,
(FCR[3]=0), each assertion of RXRDY and TXRDY will cause a single transfer. Note that the user should verify
the interface to make sure the signaling is compatible with the DMA controller.
With built-in transmit and receive FIFO buffers it allows data to be transferred in blocks (mode 1) and it is ideal
for more efficient DMA operation that further saves the CPU processing bandwidth.
To enable the DMA mode 1, FCR[3]=1. The DMA Rx FIFO reading is controlled by RXRDY. When FIFO data is
filled to the trigger level, RXRDY asserts and the DMA burst transfer begins removing characters from Rx FIFO.
The DMA transfer stops when Rx FIFO is empty and RXRDY deasserts.
The DMA transmit operation is controlled by TXRDY and is different between the NS16C2552 and NS16C2752.
On the NS16C2552, the DMA operation is initiated when transmit FIFO becomes empty and TXRDY is asserted.
The DMA controller fills the Tx FIFO and the filling stops when FIFO is full and TXRDY is deasserted.
On the NS16C2752, the DMA transfer starts when the Tx FIFO empty space exceeds the threshold set in
FCR[5:4] and TXRDY asserts. The transfer stops when Tx FIFO is full and TXRDY desserts. The threshold
setting gives CPU more time to arbitrate and relinquish bus control to DMA controller providing higher bus
efficiency.
INFRARED MODE
NS16C2552/2752 also integrates an IrDA version 1.0 compatible infrared encoder and decoder. The infrared
mode is enabled by MCR[6]=1.
In the infrared mode, the SOUT idles at logic 0. During data transmission, the encoder transmits a 3/16 bit wide
pulse for each logic 0. With shortened transmitter-on light pulse, power saving is achieved.
On the receiving end, each light pulse detected translates to a logic 0, active low (Figure 14.)
Figure 14. IrDA Data Transmission
30 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Figure 15. Internal Loopback Functional Diagram
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 31
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Design Notes
DEBUGGING HINTS
Although the UART device is fairly straight forward, there are cases that when device does not behave as
expected. The normal trouble shooting steps should include the following.
1. Check power supply voltage and make sure it is within the operating range.
2. Check device pin connections against the datasheet pin list.
3. Check an unpopulated printed circuit board (PCB) against the schematic diagram for any shorts.
4. Check the device clock input. For oscillator input, the scope probe can be attached to Xin to verify the clock
voltage swing and frequency. For crystal connection, attach the scope probe to Xout to check for the
oscillation frequency.
5. Reset should be active high and normally low.
6. Use internal loopback mode to test the CPU host interface. If loopback mode is not working, check the CPU
interface timing including read and write bus timing.
7. If loopback mode is getting the correct data, check serial data output and input. The transmit and receive
data may be looped back externally to verify the data path integrity.
CLOCK FREQUENCY ACCURACY
In the UART transmission, the transmitter clock and the receive clock are running in two different clock domains
(unlike in some communication interface that the received clock is a copy of the transmitter clock by sharing the
same clock or by performing clock-data-recovery). Not only the local oscillator frequency, but also the clock
divisor may introduce error in between the transmitter and receiver’s baud rate. The question is how much error
can be tolerated and does not cause data error?
The UART receiver has an internal sampling clock that is 16X the data rate. The sampling clock allows data to
be sampled at the 6/16 to 7/16 point of each bit. The following is an example of a 8-bit data packet with a start, a
parity, and one stop bit. (Figure 16)
Figure 16. Nominal Mid-bit Sampling
If a receiver baud rate generator deviates from the nominal baud rate by Δf, where 1/Δf = ΔT, the first sampling
point will deviate from the nominal sample point by 0.5ΔT. Consequently, the second sampling point will deviate
by 1.5ΔT, 3rd will deviate by 2.5ΔT, and the last bit of a packet with L length (in number of bits) will deviate by
(L 0.5) x ΔT
In this example, L=11, so that the last bit will deviate by
(11 0.5) x ΔT = 10.5ΔT(Figure 17)
32 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Figure 17. Deviated Baud Rate Sampling
Giving some margin for sampling error due to metastability and jitter assuming that the bit period deviation can
not be more than 6/16 the bit time (i.e., the worst case), 0.375T. So that
(L 0.5) x ΔT< 0.375T
for the receiver to correctly recover the transmitted data. Reform the equation
ΔT < 0.375T / (L 0.5)
Using the same example of 11-bit packet (L = 11), at 9600 baud, f = 9600, the sampling clock rate is f (i.e., one
sample per period) and the bit period is
T=1/f
ΔT < 0.375T / (L 0.5) = 0.375 / (f x (L 0.5))
ΔT < 0.375 / (9600 x 10.5) = 3.7 x 10-6 (sec) or 3.7 µs.
The percentage of the deviation from nominal bit period has to be less than
ΔT / T = (0.375 / (f x (L 0.5)) x f = 0.375 / L 0.5)
ΔT / T =3.7 x 10-6 x 9600 = 3.6%
From the above example, the error percentage increases with longer packet length (i.e., larger L). The best case
is packet with word length 5, a start bit and a stop bit (L = 7) that is most tolerant to error.
ΔT / T = 0.375 / (L 0.5) = 0.375 / 6.5 = 5.8%
The worst case is packet with word length 8, a start bit, a parity bit, and two stop bits (L = 12) that is least
tolerant to error.
ΔT/T=0.375/L0.5) = 0.375 / 11.5 = 3.2%
CRYSTAL REQUIREMENTS
The crystal used should meet the following requirements.
1. AT cut with parallel resonance.
2. Fundamental oscillation mode between 1 to 24 MHz.
3. Frequency tolerance and drift is well within the UART application requirements, and they are not a concern.
4. The load capacitance of the crystal should match the load capacitance of the oscillator circuitry seen by the
crystal. Under the AC conditions, the oscillator load capacitance is a lump sum of parasitic capacitance and
external capacitors. The capacitances connecting to oscillator input and output are in series seen by the
crystal. (Figure 18.) External capacitors, C1 and C2, are not required to be very accurate. The best practice
to follow crystal manufacturer’s recommendation for the load capacitance value.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 33
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Figure 18. Crystal Oscillator Circuit
It should be noted that the parasitic capacitance also include printed circuit board traces. The circuit board traces
connecting to the crystal should be kept as short as possible.
CONFIGURATION EXAMPLES
Set Baud Rate
Set divisor values to DIV_L and DIV_M.
LCR 0x03.7 = 1
DLL 0x00.7:0 = DIV_L
DLM 0x01.7:0 = DIV_M
LCR 0x03.7 = 0
Configure Prescaler Output
Set prescaler output to XIN divide by 4.
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0xBF
EFR 0x02.4 = 1
LCR 0x03.7:0 = 0
MCR 0x04.7 = 1
LCR 0x03.7:0 = 0xBF
EFR 0x02.4 = 0 (optional)
LCR 0x03.7:0 = temp
Set prescaler output to XIN divide by 1.
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0xBF
EFR 0x02.4 = 1
LCR 0x03.7:0 = 0
MCR 0x04.7 = 0
LCR 0x03.7:0 = 0xBF
EFR 0x02.4 = 0 (optional)
LCR 0x03.7:0 = temp
34 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Set Xon and Xoff flow control
Set Xon1, Xoff1 to VAL1 and VAL2.
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0xBF
Xon1 0x04.7:0 = VAL1
Xoff1 0x06.7:0 = VAL2
LCR 0x03.7:0 = temp
Set Xon2, Xoff2 to VAL1 and VAL2.
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0xBF
Xon2 0x05.7:0 = VAL1
Xoff2 0x07.7:0 = VAL2
LCR 0x03.7:0 = temp
Set Software Flow Control
Set software flow control mode to VAL.
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0xBF
EFR 0x02.3:0 = VAL
LCR 0x03.7:0 = temp
Configure Tx/Rx FIFO Threshold
Set Tx (2752) and Rx FIFO thresholds to VAL.
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0xBF
EFR 0x02.4 = 1
LCR 0x03.7:0 = 0
FCR 0x02.7:0 = VAL
LCR 0x03.7:0 = 0xBF
EFR 0x02.4 = 0 (optional)
LCR 0x03.7:0 = temp
Tx and Rx Hardware Flow Control
Configure auto RTS and CTS flow controls, enable RTS and CTS interrupts, and assert RTS.
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0xBF
EFR 0x02.7:6 = 2b’11
EFR 0x02.4 = 1
LCR 0x03.7:0 = 0
IER 0x01.7:6 = 2b’11
MCR 0x04.1 = 1
LCR 0x03.7:0 = temp
Tx and Rx DMA Control
Configure Tx and Rx in FIFO mode DMA transfers using the threshold in FCR[7:4].
Save LCR 0x03.7:0 in temp
LCR 0x03.7:0 = 0
FCR 0x02.0 = 1
FCR 0x02.3 = 1
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 35
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
LCR 0x03.7:0 = temp
36 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
DIFFERENCES BETWEEN THE PC16552D AND NS16C2552/2752
The following are differences between the versions of UART that helps user to identify the feature differences.
Table 31. Differences among the UART products
Features PC16552D NS16C2552 NS16C2752
Tx and Rx FIFO sizes 16-byte 16-byte 64-byte
Supply voltage 4.5V to 5.5V 2.97V to 5.5V 2.97V to 5.5V
Highest baud rate 1.5Mbps 5.0Mbps 5.0Mbps
Highest clock input frequency 24MHz 80MHz 80MHz
Operating temperature 0 - 70°C -40 to 85°C -40 to 85°C
Enhanced Register Set No Yes Yes
Sleep mode IER[4] No Yes Yes
Xon, Xoff, and Xon-Any software auto flow control No Yes Yes
CTS and RTS hardware auto flow control No Yes Yes
Interrupt source ID in IIR 3-bit 5-bit 5-bit
Tx FIFO trigger level select FCR[5:4] 1 level 1 level 4 levels
IrDA v1.0 mode MCR[6] No Yes Yes
Clock divisor 1 or 4 select MCR[7] No Yes Yes
NOTES ON TX FIFO OF NS16C2752
Notes on interrupt assertion and deassertion.
1. To avoid frequent interrupt request generation, there is a hysteresis of two characters. When the transmit
FIFO threshold is enabled and the number of empty spaces reaches the threshold, a THR empty interrupt is
generated requesting the CPU to fill the transmit FIFO. The host has to fill at least two characters in the Tx
FIFO before another THR empty interrupt can be generated.
The DMA request TXRDY works differently. When the number of empty spaces exceeds the threshold,
TXRDY asserts initiating the DMA transfer. The TXRDY deasserts when the transmit FIFO is full.
2. When the number of empty spaces reaches the threshold level, an interrupt is generated. If the host does not
fill the FIFO, the interrupt will remain asserted until the host writes to the THR or reads from IIR.
3. When the number of empty spaces reaches the threshold level, an interrupt is generated. If the host reads
the IIR but does not fill the Tx FIFO, the INTR is deasserted. However, if the host still does not fill the Tx
FIFO, the FIFO becomes empty. The THR empty interrupt is not generated because the host has not written
to the Tx FIFO and the interrupt service is not complete.
4. When the number of empty spaces reaches the threshold level, a THR empty interrupt is generated. If the
host writes at least one character into the Tx FIFO, the interrupt is serviced and the THR empty flag is
deasserted. Subsequently, if the host fails to fill the FIFO before it reaches empty, a THR empty interrupt will
be asserted.
5. Reset Tx FIFO causes a THR empty interrupt.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 37
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
ABSOLUTE MAXIMUM RATINGS(1)(2)
Operating Temperature 40°C to +85°C
Storage Temperature 65°C to +150°C
All Input or Output Voltages with respect to Vss 0.5V to +6.5V
Power Dissipation 250mW
ESD Rating HBM, 1.5K and 100 pF 8kV
ESD Rating Machine Model 400V
(1) Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and
should be limited to those conditions specified under DC electrical characteristics.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and
specifications.
DC SPECIFICATIONS
TA = -40°C to +85°C, VCC = +2.97V to 5.5V, VSS = 0V, unless otherwise specified.
Typical specifications are at TA=25°C, and represent most likely parametric norms at the time of product characterization.
The typical specifications are not ensured. 3.3V, 10% 5.0V, 10%
Symbol Parameter Conditions Units
Min Max Min Max
VILX Clock Input Low Voltage -0.3 0.6 -0.5 0.6 V
VIHX Clock Input High Voltage 2.4 5.5 3.1 5.5 V
VIL Input Low Voltage -0.3 0.8 -0.5 0.8 V
VIH Input High Voltage 2.0 5.5 2.2 5.5 V
VOL Output Low Voltage IOL = 6mA 0.4 V
IOL = 4mA 0.4 V
VOH Output High Voltage IOH = -6mA 2.4 V
IOH = -1mA 2.0 V
IIL Input Low Leakage 10 10 µA
IIH Input High Leakage 10 10 µA
IDD Current Consumption Static clock input 1.6 3.0 mA
CAPACITANCE
TA = 25°C, VDD = VSS = 0V
Symbol Parameter Conditions Min Typ Max Units
CXIN Clock Input Capacitance 7 pF
CXOUT Clock Output Capacitance 7 pF
fc= 1 MHz
CIN Input Capacitance 5 pF
Unmeasured Pins Returned to VSS
COUT Output Capacitance 6 pF
CI/O Input/Output Capacitance 10 pF
AC SPECIFICATIONS
TA = -40°C to +85°C, VCC = +2.97V to 5.5V, VSS = 0V, unless otherwise specified.
Typical specifications are at TA=25°C, and represent most likely parametric norms at the time of product characterization.
The typical specifications are not ensured.
Symbol Parameter Condition 3.3V Limits 5.0V Limits Units
Min Max Min Max
fcCrystal Frequency 24 24 MHz
tHILO External Clock Low/High 6 6 ns
fOSC External Clock Frequency 80 80 MHz
38 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
AC SPECIFICATIONS (continued)
TA = -40°C to +85°C, VCC = +2.97V to 5.5V, VSS = 0V, unless otherwise specified.
Typical specifications are at TA=25°C, and represent most likely parametric norms at the time of product characterization.
The typical specifications are not ensured.
Symbol Parameter Condition 3.3V Limits 5.0V Limits Units
Min Max Min Max
tRST Reset Pulse Width 70 70 ns
n Baud Rate Divisor 1 216-1 1 216-1
BCLK Baud Clock 16 x of data rate
1/16 of a bit duration
Host Interface
tAR Address Setup Time 10 10 ns
tRA Address Hold Time 1 1 ns
tRD RD Strobe Width 35 24 ns
tDY Read Cycle Delay 35 24 ns
tRDV Data Access Time 35 24 ns
tHZ Data Disable Time 0 18 0 18 ns
tWR WR Strobe Width 35 24 ns
tDY Write Cycle Delay 35 24 ns
tDS Data Setup Time 12 12 ns
tDH Data Hold Time 4 4 ns
Modem Control
tMDO Delay from WR to Output 20 15 ns
tSIM Delay from Modem input to 20 15 ns
Interrupt output
tRIM Delay to Reset interrupt from RD 23 17 ns
falling edge
Line Receive and Transmit
tSINT Delay from Stop to Interrupt Set (1) 4 4 Bclk
tRINT Delay from of RD to Reset 45 30 ns
Interrupt
tSTI Delay from center of Start to INTR 16 10 ns
Set
tWST Delay from WR to Transmit Start 0 16 0 16 Bclk
tHR Delay from WR to interrupt clear 34 22 ns
DMA Interface
tWXI Delay from WR to TXRDY rising 27 18 ns
edge
tSXA Delay from Center of Start to 8 8 Bclk
TXRDY falling edge
tSSR Delay from Stop to RXRDY falling 4 4 Bclk
edge
tRXI Delay from /RD to RXRDY rising 27 18 ns
edge
(1) The BCLK period decreases with increasing reference clock input. At higher clock input frequency, the number of BCLK increases.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 39
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
TIMING DIAGRAMS
Figure 19. External Clock Input
Figure 20. Modem Control Timing
Figure 21. Host Interface Read Timing
Figure 22. Host Interface Write Timing
40 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
Figure 23. Receiver Timing
Figure 24. Receiver Timing Non-FIFO Mode
Figure 25. Receiver Timing FIFO Mode
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 41
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
SNLS238D AUGUST 2006REVISED APRIL 2013
www.ti.com
Figure 26. Transmitter Timing
Figure 27. Transmitter Timing Non-FIFO Mode
Figure 28. Transmitter Timing FIFO Mode
42 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated
Product Folder Links: NS16C2552 NS16C2752
NS16C2552, NS16C2752
www.ti.com
SNLS238D AUGUST 2006REVISED APRIL 2013
REVISION HISTORY
Changes from Revision C (April 2013) to Revision D Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 42
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 43
Product Folder Links: NS16C2552 NS16C2752
PACKAGE OPTION ADDENDUM
www.ti.com 10-Dec-2020
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
NS16C2552TVA/NOPB ACTIVE PLCC FN 44 25 RoHS & Green SN Level-3-245C-168 HR -40 to 85 NS16C2552TVA
NS16C2552TVS/NOPB ACTIVE TQFP PFB 48 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 NS16C2
552TVS
NS16C2552TVSX/NOPB ACTIVE TQFP PFB 48 1000 RoHS & Green SN Level-3-260C-168 HR -40 to 85 NS16C2
552TVS
NS16C2752TVA/NOPB ACTIVE PLCC FN 44 25 RoHS & Green SN Level-3-245C-168 HR -40 to 85 NS16C2752TVA
>B
NS16C2752TVS/NOPB ACTIVE TQFP PFB 48 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 NS16C2
752TVS
NS16C2752TVSX/NOPB ACTIVE TQFP PFB 48 1000 RoHS & Green SN Level-3-260C-168 HR -40 to 85 NS16C2
752TVS
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com 10-Dec-2020
Addendum-Page 2
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
NS16C2552TVSX/NOPB TQFP PFB 48 1000 330.0 16.4 9.3 9.3 2.2 12.0 16.0 Q2
NS16C2752TVSX/NOPB TQFP PFB 48 1000 330.0 16.4 9.3 9.3 2.2 12.0 16.0 Q2
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Apr-2013
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
NS16C2552TVSX/NOPB TQFP PFB 48 1000 367.0 367.0 38.0
NS16C2752TVSX/NOPB TQFP PFB 48 1000 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Apr-2013
Pack Materials-Page 2
www.ti.com
PACKAGE OUTLINE
C
44X -.021.013 -0.530.33[ ]
44X -.032.026 -0.810.66[ ]
TYP
-.695.685 -17.6517.40[ ]
40X .050
[1.27]
-.638.582 -16.2014.79[ ]
.020 MIN
[0.51]
TYP-.120.090 -3.042.29[ ]
.180 MAX
[4.57]
B
NOTE 3
-.656.650 -16.6616.51[ ]
A
NOTE 3
-.656.650 -16.6616.51[ ]
(.008)
[0.2]
4215154/A 04/2017
4215154/A 04/2017
PLCC - 4.57 mm max heightFN0044A
PLASTIC CHIP CARRIER
NOTES:
1. All linear dimensions are in inches. Any dimensions in brackets are in millimeters. Any dimensions in parenthesis are for reference only.
Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Dimension does not include mold protrusion. Maximum allowable mold protrusion .01 in [0.25 mm] per side.
4. Reference JEDEC registration MS-018.
PIN 1 ID
(OPTIONAL)
144
6
18 28
29
39
40
7
17
.004 [0.1] C
.007 [0.18] C A B
SEATING PLANE
SCALE 0.800
www.ti.com
EXAMPLE BOARD LAYOUT
.002 MAX
[0.05]
ALL AROUND
.002 MIN
[0.05]
ALL AROUND
44X (.093 )
[2.35]
44X (.030 )
[0.75]
40X (.050 )
[1.27]
(.64 )
[16.2]
(.64 )
[16.2]
(R.002 ) TYP
[0.05]
4215154/A 04/2017
4215154/A 04/2017
PLCC - 4.57 mm max heightFN0044A
PLASTIC CHIP CARRIER
NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:4X
SYMM
SYMM
144
6
18 28
29
39
40
7
17
METAL SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
(PREFERRED) SOLDER MASK DETAILS
EXPOSED METAL
SOLDER MASK
OPENING METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED METAL
www.ti.com
EXAMPLE STENCIL DESIGN
44X (.030 )
[0.75]
44X (.093 )
[2.35]
(.64 )
[16.2]
(.64 )
[16.2]
40X (.050 )
[1.27]
(R.002 ) TYP
[0.05]
PLCC - 4.57 mm max heightFN0044A
PLASTIC CHIP CARRIER
4215154/A 04/2017
PLCC - 4.57 mm max heightFN0044A
PLASTIC CHIP CARRIER
NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
8. Board assembly site may have different recommendations for stencil design.
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:4X
SYMM
SYMM
144
6
18 28
29
39
40
7
17
MECHANICAL DATA
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PFB (S-PQFP-G48) PLASTIC QUAD FLATPACK
4073176/B 10/96
Gage Plane
0,13 NOM
0,25
0,45
0,75
Seating Plane
0,05 MIN
0,17
0,27
24
25
13
12
SQ
36
37
7,20
6,80
48
1
5,50 TYP
SQ
8,80
9,20
1,05
0,95
1,20 MAX 0,08
0,50 M
0,08
0°–7°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated