EN
GND
VDD
EN
RIN1-
RIN1+
RIN2+
RIN2-
DOUT2-
DOUT2+
DOUT1+
DOUT1-
ROUT1
ROUT2
DIN2
DIN1
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
NRND
DS90LV049H
www.ti.com
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
DS90LV049H High Temperature 3V LVDS Dual Line Driver and Receiver Pair
Check for Samples: DS90LV049H
1FEATURES DESCRIPTION
The DS90LV049H is a dual CMOS flow-through
2 High Temperature +125°C Operating Range differential line driver-receiver pair designed for
Up to 400 Mbps Switching Rates applications requiring ultra low power dissipation,
Flow-Through Pinout Simplifies PCB Layout exceptional noise immunity, and high data
throughput. The device is designed to support data
50 ps Typical Driver Channel-to-Channel Skew rates in excess of 400 Mbps utilizing Low Voltage
50 ps Typical Receiver Channel-to-Channel Differential Signaling (LVDS) technology.
Skew The DS90LV049H drivers accept LVTTL/LVCMOS
3.3 V Single Power Supply Design signals and translate them to LVDS signals. The
TRI-STATE Output Control receivers accept LVDS signals and translate them to
Internal Fail-Safe Biasing of Receiver Inputs 3 V CMOS signals. The LVDS input buffers have
internal failsafe biasing that places the outputs to a
Low Power Dissipation (70 mW at 3.3 V Static) known H (high) state for floating receiver inputs. In
High Impedance on LVDS Outputs on Power addition, the DS90LV049H supports a TRI-STATE
Down function for a low idle power state when the device is
Conforms to TIA/EIA-644-A LVDS Standard not in use.
Available in Low Profile 16 Pin TSSOP The EN and EN inputs are ANDed together and
Package control the TRI-STATE outputs. The enables are
common to all four gates.
CONNECTION DIAGRAM
Dual-In-Line
Order Number DS90LV049HMT
Order Number DS90LV049HMTX (Tape and Reel)
PW0016A Package
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2005–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
R1
R2
D1
D2
RIN1-
RIN1+
RIN2+
RIN2-
DOUT2-
DOUT2+
DOUT1+
DOUT1-
ROUT1
ROUT2
DIN2
DIN1
AND EN
EN
NRND
DS90LV049H
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
www.ti.com
FUNCTIONAL DIAGRAM
Table 1. TRUTH TABLE
EN EN LVDS Out LVCMOS Out
L or Open L or Open OFF OFF
H L or Open ON ON
L or Open H OFF OFF
H H OFF OFF
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
2Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated
Product Folder Links: DS90LV049H
NRND
DS90LV049H
www.ti.com
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
ABSOLUTE MAXIMUM RATINGS(1)(2)
Supply Voltage (VDD)0.3 V to +4 V
LVCMOS Input Voltage (DIN)0.3 V to (VDD + 0.3 V)
LVDS Input Voltage (RIN+, RIN-)0.3 V to +3.9 V
Enable Input Voltage (EN, EN) 0.3 V to (VDD + 0.3 V)
LVCMOS Output Voltage (ROUT)0.3 V to (VDD + 0.3 V)
LVDS Output Voltage (DOUT+, DOUT-)0.3 V to +3.9 V
LVCMOS Output Short Circuit Current (ROUT) 100 mA
LVDS Output Short Circuit Current (DOUT+, DOUT) 24 mA
LVDS Output Short Circuit Current Duration (DOUT+, DOUT) Continuous
Storage Temperature Range 65°C to +150°C
Lead Temperature Range
Soldering (4 sec.) +260°C
Maximum Junction Temperature +150°C
Maximum Package Power Dissipation @ +25°C
PW0016A Package 866 mW
Derate PW0016A Package 6.9 mW/°C above +25°C
ESD Rating
(HBM, 1.5 kΩ, 100 pF) 7 kV
(MM, 0 Ω, 200 pF) 250 V
(1) “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be specified. They are not meant to imply
that the devices should be operated at these limits. ELECTRICAL CHARACTERISTICS specifies conditions of device operation.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and
specifications.
RECOMMENDED OPERATING CONDITIONS Min Typ Max Units
Supply Voltage (VDD) +3.0 +3.3 +3.6 V
Operating Free Air Temperature (TA)40 +25 +125 °C
ELECTRICAL CHARACTERISTICS
Over supply voltage and operating temperature ranges, unless otherwise specified.(1)(2)(3)
Symbol Parameter Conditions Pin Min Typ Max Units
LVCMOS Input DC Specifications (Driver Inputs, ENABLE Pins)
VIH Input High Voltage 2.0 VDD V
VIL Input Low Voltage GND 0.8 V
DIN
IIH Input High Current VIN = VDD EN 10 1 +10 μA
EN
IIL Input Low Current VIN = GND 10 0.1 +10 μA
VCL Input Clamp Voltage ICL =18 mA 1.5 0.6 V
LVDS Output DC Specifications (Driver Outputs)
(1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground
except: VTH, VTL, VOD and ΔVOD.
(2) All typical values are given for: VDD = +3.3 V, TA= +25°C.
(3) The DS90LV049H's drivers are current mode devices and only function within datasheet specifications when a resistive load is applied
to their outputs. The typical range of the resistor values is 90 to 110 .
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: DS90LV049H
NRND
DS90LV049H
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
www.ti.com
ELECTRICAL CHARACTERISTICS (continued)
Over supply voltage and operating temperature ranges, unless otherwise specified.(1)(2)(3)
Symbol Parameter Conditions Pin Min Typ Max Units
| VOD | Differential Output Voltage 250 350 450 mV
ΔVOD Change in Magnitude of VOD for 1 35 |mV|
Complementary Output States RL= 100 Ω
(Figure 1)
VOS Offset Voltage 1.125 1.23 1.375 V
ΔVOS Change in Magnitude of VOS for 1 25 |mV|
Complementary Output States
IOS Output Short Circuit Current(4) ENABLED, 5.8 9.0 mA
DOUT
DIN = VDD, DOUT+ = 0 V or DOUT+
DIN = GND, DOUT= 0 V
IOSD Differential Output Short Circuit 5.8 9.0 mA
ENABLED, VOD = 0 V
Current(4)
IOFF Power-off Leakage VOUT = 0 V or 3.6 V 20 ±1 +20 μA
VDD = 0 V or Open
IOZ Output TRI-STATE Current EN = 0 V and EN = VDD 10 ±1 +10 μA
VOUT = 0 V or VDD
LVDS Input DC Specifications (Receiver Inputs)
VTH Differential Input High Threshold 15 35 mV
VCM = 1.2 V, 0.05 V, 2.35 V
VTL Differential Input Low Threshold -100 15 mV
VCMR Common-Mode Voltage Range VID = 100 mV, VDD=3.3 V 0.05 3 V
RIN+
VDD=3.6 V RIN- 12 ±4 +12 μA
VIN =0 V or 2.8 V
IIN Input Current VDD=0 V 10 ±1 +10 μA
VIN =0 V or 2.8 V or 3.6 V
LVCMOS Output DC Specifications (Receiver Outputs)
VOH Output High Voltage IOH = -0.4 mA, VID= 200 mV 2.7 3.3 V
VOL Output Low Voltage IOL = 2 mA, VID = 200 mV ROUT 0.05 0.25 V
IOZ Output TRI-STATE Current Disabled, VOUT =0 V or VDD -10 ±1 +10 μA
General DC Specifications
IDD Power Supply Current(5) EN = 3.3 V 21 35 mA
VDD
IDDZ TRI-State Supply Current EN = 0 V 15 25 mA
(4) Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only.
(5) Both driver and receiver inputs are static. All LVDS outputs have 100 load. All LVCMOS outputs are floating. None of the outputs
have any lumped capacitive load.
4Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated
Product Folder Links: DS90LV049H
NRND
DS90LV049H
www.ti.com
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
SWITCHING CHARACTERISTICS
VDD = +3.3V ± 10%, TA=40°C to +125°C(1) (2)
Symbol Parameter Conditions Min Typ Max Units
LVDS Outputs (Driver Outputs)
tPHLD Differential Propagation Delay High to Low 0.7 2 ns
tPLHD Differential Propagation Delay Low to High 0.7 2 ns
tSKD1 Differential Pulse Skew |tPHLD tPLHD|(3)(4) 0 0.05 0.4 ns
RL= 100 Ω
tSKD2 Differential Channel-to-Channel Skew(3)(5) 0 0.05 0.5 ns
(Figure 2 and Figure 3)
tSKD3 Differential Part-to-Part Skew(3)(6) 0 1.0 ns
tTLH Rise Time(3) 0.2 0.4 1 ns
tTHL Fall Time(3) 0.2 0.4 1 ns
tPHZ Disable Time High to Z 1.5 3 ns
tPLZ Disable Time Low to Z 1.5 3 ns
RL= 100 Ω
(Figure 4 and Figure 5)
tPZH Enable Time Z to High 1 3 6 ns
tPZL Enable Time Z to Low 1 3 6 ns
fMAX Maximum Operating Frequency(7) 200 250 MHz
LVCMOS Outputs (Receiver Outputs)
tPHL Propagation Delay High to Low 0.5 2 3.5 ns
tPLH Propagation Delay Low to High 0.5 2 3.5 ns
tSK1 Pulse Skew |tPHL tPLH|(8) 0 0.05 0.4 ns
tSK2 Channel-to-Channel Skew(9) (Figure 6 and Figure 7) 0 0.05 0.5 ns
tSK3 Part-to-Part Skew(10) 0 1.0 ns
tTLH Rise Time(3) 0.3 0.9 1.4 ns
tTHL Fall Time(3) 0.3 0.75 1.4 ns
tPHZ Disable Time High to Z 3 5.6 8 ns
tPLZ Disable Time Low to Z 3 5.4 8 ns
(Figure 8 and Figure 9)
tPZH Enable Time Z to High 2.5 4.6 7 ns
tPZL Enable Time Z to Low 2.5 4.6 7 ns
fMAX Maximum Operating Frequency(11) 200 250 MHz
(1) All typical values are given for: VDD = +3.3 V, TA= +25°C.
(2) Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO= 50 Ω, tr1 ns, and tf1 ns.
(3) These parameters are specified by design. The limits are based on statistical analysis of the device performance over PVT (process,
voltage, temperature) ranges.
(4) tSKD1 or differential pulse skew is defined as |tPHLD tPLHD|. It is the magnitude difference in the differential propagation delays between
the positive going edge and the negative going edge of the same driver channel.
(5) tSKD2 or differential channel-to-channel skew is defined as the magnitude difference in the differential propagation delays between two
driver channels on the same device.
(6) tSKD3 or differential part-to-part skew is defined as |tPLHD Max tPLHD Min| or |tPHLD Max tPHLD Min|. It is the difference between the
minimum and maximum specified differential propagation delays. This specification applies to devices at the same VDD and within 5°C of
each other within the operating temperature range.
(7) fMAX generator input conditions: tr= tf< 1 ns (0% to 100%), 50% duty cycle, 0 V to 3 V. Output Criteria: duty cycle = 45%/55%, VOD >
250 mV, all channels switching.
(8) tSK1 or pulse skew is defined as |tPHL tPLH|. It is the magnitude difference in the propagation delays between the positive going edge
and the negative going edge of the same receiver channel.
(9) tSK2 or channel-to-channel skew is defined as the magnitude difference in the propagation delays between two receiver channels on the
same device.
(10) tSK3 or part-to-part skew is defined as |tPLH Max tPLH Min| or |tPHL Max tPHL Min|. It is the difference between the minimum and maximum
specified propagation delays. This specification applies to devices at the same VDD and within 5°C of each other within the operating
temperature range.
(11) fMAX generator input conditions: tr= tf< 1 ns (0% to 100%), 50% duty cycle, VID = 200 mV, VCM = 1.2 V . Output Criteria: duty cycle =
45%/55%, VOH > 2.7 V, VOL < 0.25 V, all channels switching.
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: DS90LV049H
Transmission Line
Transmission Line
DC Block
DC Block
Signal
Generator Transmission Line D
50 :
50 :
50 :
Oscilloscope
Z0 = 50 :
C = 15 pF Distributed
Z0 = 50 :
C = 15 pF Distributed
DIN
DOUT+
DOUT-
Power
Supply VDD EN
100 :
SMU
SMU
SMU D
DIN
DOUT+
DOUT-
Power
Supply VDD EN
100 :
NRND
DS90LV049H
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
www.ti.com
PARAMETER MEASUREMENT INFORMATION
Figure 1. Driver VOD and VOS Test Circuit
Figure 2. Driver Propagation Delay and Transition Time Test Circuit
Figure 3. Driver Propagation Delay and Transition Time Waveforms
6Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated
Product Folder Links: DS90LV049H
Transmission Line
Power
Supply
R
950 :50 :
Oscilloscope
Z0 = 50 :
C = 15 pF Distributed
EN
ROUT
Power
Supply
Transmission Line
100 :
Z0 = 50 :
C = 15 pF Distributed RIN+
Signal
Generator Transmission Line
RIN-
VDD
Transmission Line
Transmission Line
Signal
Generator Transmission Line
D
50 :
50 :
50 :
Oscilloscope
Z0 = 50 :
C = 15 pF Distributed
Z0 = 50 :
C = 15 pF Distributed
EN
DOUT+
DOUT-
3.3 V DIN
VDD
100 :
2.4 V
1 k:
1 k:
950 :
950 :
Power Supplies
2.4 V
NRND
DS90LV049H
www.ti.com
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
PARAMETER MEASUREMENT INFORMATION (continued)
Figure 4. Driver TRI-STATE Delay Test Circuit
Figure 5. Driver TRI-STATE Delay Waveform
Figure 6. Receiver Propagation Delay and Transition Time Test Circuit
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: DS90LV049H
Transmission Line
Signal
Generator Transmission Line
R
50 :
950 :
50 :
Oscilloscope
Z0 = 50 :
C = 15 pF Distributed
Z0 = 50 :
C = 15 pF Distributed
EN
ROUT
1.4 V 100 :
RIN+
1.0 V RIN-
VDD
Power Supplies
2.5 V 1 k:
NRND
DS90LV049H
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
www.ti.com
PARAMETER MEASUREMENT INFORMATION (continued)
Figure 7. Receiver Propagation Delay and Transition Time Waveforms
Figure 8. Receiver TRI-STATE Delay Test Circuit
8Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated
Product Folder Links: DS90LV049H
EN
EN
1.5 V
3 V
0 V
tPLZ
tPHZ
0.5 V
0.5 V
1.5 V 1.5 V
1.5 V
tPZL
tPZH
VDD / 2
VOL
VDD / 2
VOH
50%
50%
OUT
OUT
0 V
3 V
NRND
DS90LV049H
www.ti.com
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
PARAMETER MEASUREMENT INFORMATION (continued)
Figure 9. Receiver TRI-STATE Delay Waveforms
TYPICAL APPLICATION
Figure 10. Point-to-Point Application
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: DS90LV049H
NRND
DS90LV049H
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
www.ti.com
APPLICATION INFORMATION
General application guidelines and hints for LVDS drivers and receivers may be found in the following application
notes: LVDS Owner's Manual (lit #550062-003), AN-808 (SNLA028), AN-977 (SNLA166), AN-971 (SNLA165),
AN-916 (SNLA219), AN-805 (SNOA233), AN-903 (SNLA034).
LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as
is shown in Figure 10. This configuration provides a clean signaling environment for the fast edge rates of the
drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair
cable, a parallel pair cable, or simply PCB traces. Typically, the characteristic differential impedance of the media
is in the range of 100 Ω. A termination resistor of 100 Ω(selected to match the media), and is located as close to
the receiver input pins as possible. The termination resistor converts the driver output current (current mode) into
a voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver
configuration, but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as
well as ground shifting, noise margin limits, and total termination loading must be taken into account.
The TRI-STATE function allows the device outputs to be disabled, thus obtaining an even lower power state
when the transmission of data is not required.
The DS90LV049H has a flow-through pinout that allows for easy PCB layout. The LVDS signals on one side of
the device easily allows for matching electrical lengths of the differential pair trace lines between the driver and
the receiver as well as allowing the trace lines to be close together to couple noise as common-mode. Noise
isolation is achieved with the LVDS signals on one side of the device and the TTL signals on the other side.
POWER DECOUPLING RECOMMENDATIONS
Bypass capacitors must be used on power pins. Use high frequency ceramic (surface mount is recommended)
0.1 μF and 0.001 μF capacitors in parallel at the power supply pin with the smallest value capacitor closest to the
device supply pin. Additional scattered capacitors over the printed circuit board will improve decoupling. Multiple
vias should be used to connect the decoupling capacitors to the power planes. A 10 μF (35 V) or greater solid
tantalum capacitor should be connected at the power entry point on the printed circuit board between the supply
and ground.
PC BOARD CONSIDERATIONS
Use at least 4 PCB layers (top to bottom); LVDS signals, ground, power, TTL signals.
Isolate TTL signals from LVDS signals, otherwise the TTL may couple onto the LVDS lines. It is best to put TTL
and LVDS signals on different layers which are isolated by a power/ground plane(s).
Keep drivers and receivers as close to the (LVDS port side) connectors as possible.
DIFFERENTIAL TRACES
Use controlled impedance traces which match the differential impedance of your transmission medium (that is,
cable) and termination resistor. Run the differential pair trace lines as close together as possible as soon as they
leave the IC (stubs should be < 10 mm long). This will help eliminate reflections and ensure noise is coupled as
common-mode. In fact, we have seen that differential signals which are 1 mm apart radiate far less noise than
traces 3 mm apart since magnetic field cancellation is much better with the closer traces. In addition, noise
induced on the differential lines is much more likely to appear as common-mode which is rejected by the
receiver.
Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase
difference between signals which destroys the magnetic field cancellation benefits of differential signals and EMI
will result. (Note the velocity of propagation, v = c/Er where c (the speed of light) = 0.2997 mm/ps or 0.0118
in/ps). Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match
differential impedance and provide isolation for the differential lines. Minimize the number or vias and other
discontinuities on the line.
Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels.
Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode
rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid
discontinuities in differential impedance. Minor violations at connection points are allowable.
10 Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated
Product Folder Links: DS90LV049H
NRND
DS90LV049H
www.ti.com
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
TERMINATION
Use a termination resistor which best matches the differential impedance or your transmission line. The resistor
should be between 90 and 130 . Remember that the current mode outputs need the termination resistor to
generate the differential voltage. LVDS will not work without resistor termination. Typically, connecting a single
resistor across the pair at the receiver end will suffice.
Surface mount 1% to 2% resistors are best. PCB stubs, component lead, and the distance from the termination
to the receiver inputs should be minimized. The distance between the termination resistor and the receiver
should be < 10 mm (12 mm MAX).
PROBING LVDS TRANSMISSION LINES
Always use high impedance (> 100 k), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz)
scope. Improper probing will give deceiving results.
CABLES AND CONNECTORS, GENERAL COMMENTS
When choosing cable and connectors for LVDS it is important to remember:
Use controlled impedance media. The cables and connectors you use should have a matched differential
impedance of about 100 . They should not introduce major impedance discontinuities.
Balanced cables (for example, twisted pair) are usually better than unbalanced cables (ribbon cable, simple
coax.) for noise reduction and signal quality. Balanced cables tend to generate less EMI due to field canceling
effects and also tend to pick up electromagnetic radiation a common-mode (not differential mode) noise which is
rejected by the receiver.
FAIL-SAFE FEATURE
An LVDS receiver is a high gain, high speed device that amplifies a small differential signal (20 mV) to CMOS
logic levels. Due to the high gain and tight threshold of the receiver, care should be taken to prevent noise from
appearing as a valid signal.
The receiver's internal fail-safe circuitry is designed to source/sink a small amount of current, providing fail-safe
protection (a stable known state of HIGH output voltage) for floating receiver inputs.
The DS90LV049H has two receivers, and if an application requires a single receiver, the unused receiver inputs
should be left OPEN. Do not tie unused receiver inputs to ground or any other voltages. The input is biased by
internal high value pull up and pull down current sources to set the output to a HIGH state. This internal circuitry
will ensure a HIGH, stable output state for open inputs.
External lower value pull up and pull down resistors (for a stronger bias) may be used to boost fail-safe in the
presence of higher noise levels. The pull up and pull down resistors should be in the 5 kto 15 krange to
minimize loading and waveform distortion to the driver. The common-mode bias point should be set to
approximately 1.2 V (less than 1.75 V) to be compatible with the internal circuitry.
For more information on failsafe biasing of LVDS interfaces please refer to AN-1194.
PIN DESCRIPTIONS
Pin No. Name Description
10, 11 DIN Driver input pins, LVCMOS levels. There is a pull-down current source present.
6, 7 DOUT+ Non-inverting driver output pins, LVDS levels.
5, 8 DOUTInverting driver output pins, LVDS levels.
2, 3 RIN+ Non-inverting receiver input pins, LVDS levels. There is a pull-up current source present.
1, 4 RIN- Inverting receiver input pins, LVDS levels. There is a pull-down current source present.
14, 15 ROUT Receiver output pins, LVCMOS levels.
9, 16 EN, EN Enable and Disable pins. There are pull-down current sources present at both pins.
12 VDD Power supply pin.
13 GND Ground pin.
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: DS90LV049H
40 60 80 100 120 140 160
Resistor Load - RL [:]
0.25
0.30
0.35
0.40
0.45
Differential Output Voltage - VOD [V]
VDD = 3.3 V
TA = 25o C
NRND
DS90LV049H
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
www.ti.com
TYPICAL PERFORMANCE CURVES
Differential Output Voltage Power Supply Current
vs Load Resistor vs Frequency
12 Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated
Product Folder Links: DS90LV049H
NRND
DS90LV049H
www.ti.com
SNLS200A SEPTEMBER 2005REVISED APRIL 2013
REVISION HISTORY
Changes from Original (April 2013) to Revision A Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 12
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: DS90LV049H
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2013
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
DS90LV049HMT/NOPB NRND TSSOP PW 16 92 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM 90LV049
HMT
DS90LV049HMTX/NOPB NRND TSSOP PW 16 2500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM 90LV049
HMT
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
PACKAGE OPTION ADDENDUM
www.ti.com 30-Oct-2013
Addendum-Page 2
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
DS90LV049HMTX/NOPB TSSOP PW 16 2500 330.0 12.4 6.95 5.6 1.6 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 6-Nov-2015
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
DS90LV049HMTX/NOPB TSSOP PW 16 2500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 6-Nov-2015
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
DS90LV049HMT/NOPB DS90LV049HMTX/NOPB