International Rectifier HEXFET Power MOSFET Dynamic dv/dt Rating Repetitive Avalanche Rated @ Fast Switching @ Ease of Paralleling Simple Drive Requirements Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low PD-9.506B IRFBC40 s Ip = 6.2A Voss = 600V Rosvon) = 1.2Q on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. S * TO-220AB Absolute Maximum Ratings | Parameter Max. Units lo @ Te = 25C | Continuous Drain Current, Ves @ 10 V 6.2 Ip @ Tc = 100C | Continuous Drain Current, Ves @ 10 V 3.9 A lpm Pulsed Drain Current @ 25 Pp @ To =25C_| Power Dissipation 125 WwW Linear Derating Factor 1.0 WIC Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy @ 570 mJ lar Avalanche Current 6.2 A Ear Repetitive Avalanche Energy 13 mJ dv/dt Peak Diode Recovery dv/dt 3.0 Vins Ty Operating Junction and -55 to +150 Tsta Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting Torque, 6-32 or M3 screw 10 tbfein (1.1 Nem) Thermal Resistance Parameter Min. Typ. Max. Units Rec Junction-to-Case =_ _ 1.0 Recs Case-to-Sink, Flat, Greased Surface 0.50 _ CAN Resa i Junction-to-Ambient = = 62 443IRFBC40 Electrical Characteristics @ Ty = 25C (unless otherwise specified) | Parameter Min. | Typ. | Max. ; Units Test Conditions Viaryoss Drain-to-Source Breakdown Voltage 600 _ _ Vs] Ves=0V, Iln= 250nA AVerpss/ATy| Breakdown Voltage Temp. Coefficient j; 0.70} | VC | Reference to 25C, Ib= 1mA Rosjon) Static Drain-to-Source On-Resistance _ - 1.2 Q | Vas=10V, In=3.7A @ Vash) Gate Threshold Voltage 2.0 _ 4.0 V__ | Vos=Ves, Ilp= 250A Gis Forward Transconductance 47 _ _ S | Vps=100V, Ip=3.7A @ Ipss Drain-to-Source Leakage Current 100 HA Vos=600V, Vas=0V - | 500 Vos=480V, Vas=0V, Ty=125C less Gate-to-Source Forward Leakage | = | 100 | ,, |Vas=20v Gate-to-Source Reverse Leakage _- | -100 Vas=-20V Qg Total Gate Charge _ _ 60 Ip=6.2A Qgs Gate-to-Source Charge | | &3 | nC | Vps=360V Qo Gate-to-Drain ("Miller") Charge > _ 30 Ves=10V See Fig. 6 and 13 @ ta(on) Turn-On Delay Time _ 13 > Vpp=300V t Rise Time _ 18 _ ns Ip=6.2A tatott Turn-Off Delay Time _ 55 _ Re=9.12. tr Fall Time _ 20 = Rp=47Q See Figure 10 Lo Internal Drain Inductance _ 45 _ Sami goad ) nH | from package fis Ls Internal Source Inductance {75 ) and center of Bp die contact 8 Ciss Input Capacitance ;1300; Vas=0V Coss Output Capacitance | 160 | PF | Vps=25V Crss Reverse Transfer Capacitance _ 30 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. Units | Test Conditions is Continuous Source Current _ | 62 MOSFET symbol D (Body Diode) A showing the ism Pulsed Source Current _ _ 25 integral reverse 4% (Body Diode) p-n junction diode. 8 Vsp Diode Forward Voltage _ 1.5 V_ | Ty=25C, Is=6.2A, Vas=0V @ ter Reverse Recovery Time | 450 | 940 { ns | TiH25C, Ir=6.2A Qn Reverse Recovery Charge _ 3.8 | 7.9 | pC | di/dt=100Ais ton Forward Turn-On Time Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp) Notes: @ Repetitive rating; pulse width limited by max. junction temperature (See Figure 11) Vpp=50V, starting Ty=25C, L=27mH Re=25, ias=6.2A (See Figure 12) tsps6.2A, di/dt<80A/us, VopsV(eA)Dss, Tys150C Pulse width < 300 ys; duty cycle <2%. 444Ip, Drain Current (Amps) Ip, Drain Current (Amps) IRFBC40 3. 404 g E x r= 2 5 3 & a 10 4 10 @20us PULSE WIDTH 20us PULSE WIDTH Te = 25 To = 150C so! 102 40 to! 402 Vos, Drain-to-Source Voltage (volts) Vps, Drain-to-Source Voltage (volts) Fig 1. Typical Output Characteristics, Fig 2. Typical Output Characteristics, To=25C To=150C (Normalized) 0.5 Vpg = 100V Roscon); Drain-to-Source On Resistance 20us PULSE WIDTH 0.0 V6S = 10V 4 8 g 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 Vas, Gate-to-Source Voltage (volts) Ty, Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature 445IRFBC40 3000 Veg = Ov, f = IMHz = Cgs + Cga Cag SHORTED = Cga = Cas + Ciss 2500 Coss 2000 1500 Capacitance (pF) 1000 Ltd 500 Vas, Gate-to-Source Voltage (volts) FOR TEST CIRCUIT SEE FIGURE 13 10% 0 10 20 30 40 60 Vps, Drain-to-Source Voltage (volts) Qa, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 5 OPERATION IN THIS AREA LIMITED BY Fos (oN! Isp, Reverse Drain Current (Amps) Ip, Drain Current (Amps) 0.1 5 T Ty=150C Ves 7 OV 3 SINGLE Pt 0.4 0. 0. 1.0 1.2 10 Te 5 4 2 5 10 2 5 1022 5 4032 5 104 Vsp, Source-to-Drain Voltage (volts) Vos, Drain-to-Source Voltage (volts) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 446zl w b a a ~ o a o Ip, Drain Current (Amps) 0.0 25 Fig 9. IRFBC40 Vos WV at 7 -Vop VP 10V Pulse Width < ips Duty Factor < 0.1% = 50 75 100 125 450 Tc, Case Temperature (C) tajon) tr taiory tf Maximum Drain Current Vs. Fig 10b. Switching Time Waveforms Case Temperature 40 = Qo 3 ae 2 Qn cS S a a a Bg E 0.4 pet 7 c Pow - ee t | SINGLE PULSE NOTES: "Pe (THERMAL RESPONSE) 4, DUTY FACTOR, D=t4/t2 2. PEAK Ty=Po x Zthyc + To 40 108 104 108 108 0.4 1 10 t;, Rectangular Pulse Duration (seconds) Fig 11. Maximum Effective Transient Thermal impedance, Junction-to-Case 447IRFBC40 Vary tp to obtain Vos > required las > E > 2 aD c Lu} =6800 7 a Fig 12a. Unclamped Inductive Test Circuit 2 soa a V 2 (RIDSS 2 400 oO 8 ut 200 Vos 25 50 78 100 426 450 Starting Ty, Junction Temperature(C) lag te et Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator ena Ves amA tL \ Charge Current Samptng Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1505 Appendix B: Package Outline Mechanical Drawing - See page 1509 Appendix C: Part Marking Information See page 1516 Intemational ' Appendix E: Optional Leadforms See page 1525 Rectifi er 448