PD - 97269A IRGB4045DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features * * * * * * * * * * IC = 6.0A, TC = 100C Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 C 5s SCSOA Square RBSOA 100% of the parts tested for ILM Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package G tsc > 5s, Tjmax = 175C E VCE(on) typ. = 1.7V n-channel C Benefits E * High Efficiency in a Wide Range of Applications * Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses * Rugged Transient Performance for Increased Reliability * Excellent Current Sharing in Parallel Operation * Low EMI G C TO-220AB G C E Gate Collector Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25C IC@ TC = 100C ICM ILM IF@TC=25C IF@TC=100C IFM VGE PD @ TC =25 PD @ TC =100 TJ TSTG Units Max. Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current, VGE = 15V Clamped Inductive Load Current, VGE = 20V Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current 600 12 6.0 18 24 8.0 4.0 24 20 30 77 39 c d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds V A V W C -55 to + 175 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RJC RJC RCS RJA 1 e e Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount e Min. Typ. Max. Units -- -- -- -- -- -- 0.5 -- 1.94 6.30 -- 62 C/W www.irf.com 01/28/2010 IRGB4045DPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions VGE = 0V, Ic =100 A Ref.Fig f V(BR)CES Collector-to-Emitter Breakdown Voltage 600 -- -- V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage -- 0.36 -- -- 1.7 2.0 VCE(on) Collector-to-Emitter Saturation Voltage -- 2.07 -- -- 2.14 -- VGE(th) Gate Threshold Voltage 4.0 -- 6.5 VGE(th)/TJ Threshold Voltage temp. coefficient -- -13 -- gfe Forward Transconductance -- 5.8 -- S VCE = 25V, IC = 6.0A, PW =80s -- -- 25 A VGE = 0V,VCE = 600V -- -- 250 -- 1.60 2.30 -- 1.30 -- -- -- 100 ICES VFM IGES Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V o V/C VGE = 0V, Ic = 250A ( 25 -175 C ) f CT6 IC = 6.0A, VGE = 15V, TJ = 25C V IC = 6.0A, VGE = 15V, TJ = 150C 5,6,7,9, IC = 6.0A, VGE = 15V, TJ = 175C 10 ,11 V VCE = VGE, IC = 150A 9,10,11,12 o mV/C VCE = VGE, IC = 250A ( 25 -175 C ) VGE = 0V, VCE = 600V, TJ =175C V IF = 6.0A nA VGE = 20 V 8 IF = 6.0A, TJ = 175C Switching Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Total Gate Charge (turn-on) -- 13 19.5 Qge Gate-to-Emitter Charge (turn-on) -- 3.1 4.65 Conditions nC Qgc Gate-to-Collector Charge (turn-on) -- 6.4 9.6 VGE = 15V Turn-On Switching Loss -- 56 86 IC = 6.0A, VCC = 400V, VGE = 15V Eoff Turn-Off Switching Loss -- 122 143 Etotal Total Switching Loss -- 178 229 td(on) Turn-On delay time -- 27 35 15 Rise time -- 11 td(off) Turn-Off delay time -- 75 93 tf Fall time -- 17 22 Eon Turn-On Switching Loss -- 140 -- Eoff Turn-Off Switching Loss -- 189 -- Etotal Total Switching Loss -- 329 -- td(on) Turn-On delay time -- 26 -- tr Rise time -- 12 -- td(off) Turn-Off delay time -- 95 -- tf Fall time -- 32 -- Cies Input Capacitance -- 350 -- Coes Output Capacitance -- 29 -- Cres Reverse Transfer Capacitance -- 10 -- J Reverse Bias Safe Operating Area CT1 RG = 47, L=1mH, LS= 150nH, TJ = 25C CT4 Energy losses include tail and diode reverse recovery IC = 6.0A, VCC = 400V ns RG = 47, L=1mH, LS= 150nH CT4 TJ = 25C IC = 6.0A, VCC = 400V, VGE = 15V J 13,15 RG = 47, L=1mH, LS= 150nH, TJ = 175C CT4 Energy losses include tail and diode reverse recovery IC = 6.0A, VCC = 400V ns RG = 47, L=1mH, LS= 150nH TJ = 175C VGE = 0V pF WF1,WF2 14,16 CT4 WF1,WF2 23 VCC = 30V f = 1Mhz TJ = 175C, IC = 24A RBSOA 24 VCC = 400V Eon tr Ref.Fig IC = 6.0A VCC = 500V, Vp =600V FULL SQUARE 4 CT2 RG = 100, VGE = +20V to 0V VCC = 400V, Vp =600V 22, CT3 SCSOA Short Circuit Safe Operating Area 5 -- -- s Erec Reverse recovery energy of the diode -- 178 -- J TJ = 175 C trr Diode Reverse recovery time -- 74 -- ns VCC = 400V, IF = 6.0A 20,21 Irr Peak Reverse Recovery Current -- 12 -- A VGE = 15V, Rg = 47, L=1mH, LS=150nH WF3 RG = 100, VGE = +15V to 0V o WF4 17,18,19 Notes: VCC = 80% (VCES ), VGE = 15V, L = 1.0mH, RG = 47. Pulse width limited by max. junction temperature. R is measured at T J approximately 90C. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGB4045DPbF 14 80 12 70 60 10 50 Ptot (W) IC (A) 8 6 40 30 4 20 2 10 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (C) T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10sec 10 10 IC A) IC (A) 100sec DC 1 1 Tc = 25C Tj = 175C Single Pulse 0 0.1 1 10 100 10 1000 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175C, VGE = 20V Fig. 3 - Forward SOA, TC = 25C, TJ 175C, VGE = 15V 20 20 Top V = 18V GE V = 15V GE VGE = 12V 15 V = 10V GE Bottom VGE = 8.0V 10 ICE (A) ICE (A) 15 5 Top Bottom 10 V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE 5 0 0 0 www.irf.com 1000 2 4 6 8 10 0 2 4 6 8 10 VCE (V) VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s 3 IRGB4045DPbF 20 Top Bottom 18 16 -40C 25C 175C 14 12 IF (A) ICE (A) 15 20 V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE 10 10 8 6 5 4 2 0 0 0 2 4 6 8 10 0.0 1.0 2.0 VF (V) VCE (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80s 10 10 8 8 ICE = 3.0A VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175C; tp = 80s 6 ICE = 6.0A ICE = 12A 4 2 6 ICE = 3.0A ICE = 6.0A ICE = 12A 4 2 0 0 5 10 15 20 5 10 VGE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 25C 20 IC, Collector-to-Emitter Current (A) 10 8 VCE (V) 15 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40C ICE = 3.0A ICE = 6.0A 6 ICE = 12A 4 2 18 T J = 25C T J = 175C 16 14 12 10 8 6 4 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175C 4 3.0 20 4 6 8 10 12 14 16 VGE, Gate-to-Emitter Voltage (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s www.irf.com IRGB4045DPbF 400 1000 350 Swiching Time (ns) Energy (J) 300 250 200 EOFF 150 tdOFF 100 tF tdON 10 tR EON 100 50 1 0 2 4 6 8 10 12 14 2 4 8 10 12 14 IC (A) IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175C; L=1mH; VCE= 400V RG= 47; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 175C; L = 1mH; VCE = 400V, RG = 47; VGE = 15V. 220 1000 200 EOFF Swiching Time (ns) 180 Energy (J) 6 160 EON 140 120 tdOFF 100 tF tdON 10 tR 100 80 60 1 0 25 50 75 100 125 0 25 Fig. 15 - Typ. Energy Loss vs. RG TJ = 175C; L = 1mH; VCE = 400V, ICE = 6.0A; VGE = 15V 100 125 Fig. 16- Typ. Switching Time vs. RG TJ = 175C; L=1mH; VCE= 400V ICE= 6.0A; VGE= 15V 22 30 20 25 RG = 10 18 20 16 15 IRR (A) IRR (A) 75 RG () Rg () RG = 22 10 RG = 47 5 RG = 100 14 12 10 8 6 0 2 4 6 8 10 12 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 175C www.irf.com 50 14 0 25 50 75 100 125 RG () Fig. 18 - Typical Diode IRR vs. RG TJ = 175C; IF = 6.0A 5 IRGB4045DPbF 1200 20 18 1000 12A 10 QRR (nC) IRR (A) 16 14 12 22 800 47 6.0A 600 10 100 400 3.0A 8 200 6 0 200 400 600 800 1000 0 1200 500 1500 diF /dt (A/s) diF /dt (A/s) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 6.0A; TJ = 175C 50 20 350 300 40 Time (s) RG = 47 10 30 5 20 Current (A) Isc RG = 22 200 Tsc 15 RG = 10 250 Energy (J) 1000 150 RG = 100 100 10 0 50 2 4 6 8 10 12 8 14 10 12 IF (A) 18 Fig. 22- Typ. VGE vs. Short Circuit Time VCC=400V, TC =25C 1000 16 VGE, Gate-to-Emitter Voltage (V) Cies Capacitance (pF) 16 VGE (V) Fig. 21 - Typical Diode ERR vs. IF TJ = 175C 100 Coes 10 Cres 1 V CES = 400V 14 V CES = 300V 12 10 8 6 4 2 0 0 100 200 300 400 VCE (V) Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 14 500 0 2 4 6 8 10 12 14 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 6.0A, L=600H www.irf.com IRGB4045DPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 J 0.02 0.01 R1 R1 J 1 R2 R2 R3 R3 C 2 1 3 2 4 3 4 Ci= i/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 i (sec) Ri (C/W) R4 R4 0.0415 0.000005 0.7262 0.000076 0.7721 0.000810 0.4016 0.004929 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 0.20 1 0.10 0.05 J 0.02 0.1 0.01 R1 R1 J 1 R2 R2 R3 R3 C 1 2 2 3 3 Ci= i/Ri Ci i/Ri 1E-005 0.0001 4 0.2195 0.000023 1.7733 0.000165 2.9352 0.001493 1.3704 0.013255 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 4 i (sec) Ri (C/W) R4 R4 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4045DPbF L L DUT 0 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.5 - Resistive Load Circuit 8 VCC 80 V + - DUT Rg 480V Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com IRGB4045DPbF 600 12 600 500 10 500 400 8 400 6 300 90% ICE 200 4 5% ICE 100 VCE (V) VCE (V) tf 300 30 25 tr TEST CURRENT 90% test current 2 100 0 0 -2 -100 10 10% test current 0 0.2 0.4 0.6 0.8 0 Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175C using Fig. CT.4 100 t RR -5 -400 -10 -500 -15 -20 0.05 0.15 0.25 time (S) WF.3- Typ. Diode Recovery Waveform @ TJ = 175C using CT.4 www.irf.com Vce (V) VF (V) 10% Peak IRR Peak IRR -600 -0.05 450 5 0 80 500 10 QRR -200 -300 4.7 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175C using Fig. CT.4 15 -100 4.5 -5 time (s) time(s) 0 Eon Loss 4.3 1 5 5% VCE Eoff Loss -100 -0.2 15 200 5% VCE 0 20 VCE 70 400 60 350 50 300 40 250 200 ICE 30 20 150 10 100 0 50 -10 0 -20 -2 -1 0 1 2 3 4 5 6 7 8 Time (uS) WF.4- Typ. Short Circuit Waveform @ TJ = 25C using CT.3 9 IRGB4045DPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/