1. General description
The LPC546xx is a family of ARM Cortex-M4 based microcontrollers for embedded
applications featuring a rich peripheral set with very low power consumption and
enhanced debug features.
The ARM Cortex-M4 is a 32- bit core that of fer s system e nhancements such as low powe r
consumption, enhanced deb ug features, and a high level of support block integration. The
ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture with
separate local instruction and data buses as well as a third bus for peripherals, and
includes an internal prefetch unit that supports speculative branching. The ARM
Cortex-M4 supp or ts single-cy cle dig ital signal processing and SIMD instructions. A
hardware floating-point processor is integrated into the core.
The LPC546xx family includes up to 512 KB of flash, 200 KB of on-chip SRAM, up to
16 kB of EEPROM memory, a quad SPI Flash Interface (SPIFI) for expanding program
memory, one high-speed and one full-speed USB host and device controller, Ethernet
AVB, LCD controller, Smart Card Interfaces, SD/MMC, CAN FD, an External Memory
Controller (EMC ), a DMIC su bs yste m with PDM micr op ho n e inte r fac e an d I2S, five
general-purpose timers, SCTimer/PWM, RTC/alarm timer, Multi-Rate Timer (MRT), a
Windowed Watchdog Timer (WWDT), ten flexible serial communication peripherals
(USART, SPI, I2S, I2C interface), 12-bit 5.0 Msamples/sec ADC, temperature sensor.
2. Features and benefits
ARM Cortex-M4 core (version r0p1):
ARM Cortex-M4 processor, running at a frequency of up to 180 MHz.
Floating Point Unit (FPU) and Memory Protection Unit (MPU).
ARM Cortex-M4 built-in Nested Vectored Interrupt Controller (NVIC).
Non-maskable Interrupt (NMI) input with a selection of sources.
Serial Wire Debug (SWD) with six instruction breakpoints, two literal comparators,
and four watch points. Includes Serial Wire Output and ET M Trace for enhanced
debug capabilities, and a debug timestamp counter.
System tick timer.
On-chip memory:
Up to 512 KB on-chip flash program memory with flash accelerator and 256 byte
page erase and write.
LPC546xx
32-bit ARM Cortex-M4 microcontroller; up to 512 KB flash and
200 kB SRAM; High-speed USB device/host + PHY; Full-speed
USB device/host; Ethernet AVB; LCD; EMC; SPIFI; CAN FD,
SDIO; 12-bit 5 Msamples/s ADC; DMIC subsystem
Rev. 1.6 — 21 April 2017 Product data sheet
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 2 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Up to 200 KB total SRAM consisting of 160 KB contiguous main SRAM and an
additional 32 KB SRAM on the I&D buses. 8 KB of SRAM bank inten ded for USB
traffic.
16 KB of EEPROM.
ROM API support:
Flash In-Application Programming (IAP) and In-System Programming (ISP).
ROM-based USB drivers (HID, CDC, MSC, and DFU). Flash updates via USB.
Booting from valid user code in flash, USART, SPI, and I2C.
Legacy, Single, and Dual image boot.
OTP API for programming OTP memory.
Random Numbe r Gene ra to r (RN G) API.
Serial interfaces:
Flexcomm Interface contains ten serial peripherals. Each Flexcomm Interface can
be selected by software to be a USART, SPI, or I2C interface. Two Flexcomm
Interfaces also include an I2S interface. Each Flexcomm Interface includes a FIFO
that supports USART, SPI, and I2S if supported by that Flexcomm Interface. A
variety of clocking options are available to each Fl excomm Interface and include a
shared fractional baud-rate generator.
I2C-bus interfaces support Fast-mode and Fast-mode Plus with data rates of up to
1Mbit/s and with multiple address recognition and monitor mode. Two sets of true
I2C pads also support High Speed Mode (3.4 Mbit/s) as a slave.
Two ISO 7816 Smart Card Interfaces with DMA support.
USB 2.0 high-speed host /d ev ice co nt ro ller with on -c hip high -speed PHY.
USB 2.0 full-speed host /d ev ice contro lle r with on-chip PHY and dedicated DMA
controller supporting crystal-less operation in device mode.
SPIFI with XIP feature uses up to four dat a lines to access off-chip SPI/DSPI/QSPI
flash memory at a much higher rate than standard SPI or SSP interfaces.
Ethernet MAC with MII/RMII interface with Audio Video Brid ging (AVB) support and
dedicated DMA controller.
Two CAN FD modules with dedicated DMA controller.
Digital peripherals:
DMA controller with 30 channels and up to 24 programmable triggers, able to
access all memories and DMA-capable peripherals.
LCD Controller su pp ortin g bo th Sup er- Twisted Nematic (STN) and Thin-Film
Transistor (TFT) displays. It has a dedicated DMA controller, selectable display
resolution (up to 1024 x 768 pixels), and supports up to 24-bit true-color mode.
External Memory Controller (EMC) provides support for asynchronous static
memory devices such as RAM, ROM and flash, in addition to dynamic memories
such as single data rate SDRAM with an SDRAM clock of up to 100 MHz.
Secured digital inp ut/output (SD/MMC and SDIO) card interface with DMA support.
CRC engine block can calculate a CRC on supplied data using one of three
standard polynomials with DMA support.
Up to 171 General-Purpose Input/Output (GPIO) pins.
GPIO registers are located on the AHB for fast access. The DMA supports GPIO
ports.
Up to eight GPIOs can be selected as Pin Interrupts (PINT), triggered by rising,
falling or both input edges.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 3 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Two GPIO Grouped Interrupt s (GINT) enable an interrupt based on a logical
(AND/OR) combination of input states.
CRC engine.
Analog peripherals:
12-bit ADC with 12 input channels and with multiple internal and exte rn al trig g er
inputs and sample rates of up to 5.0 MSamples/sec. The ADC supports two
independent conversion sequences.
Integrated temperature sensor connected to the ADC.
DMIC subsystem including a dual-channel PDM microphone interface, flexible
decimators, 16 entry FIFOs, optional DC locking, hardware voice activity detection,
and the option to stream the processed output data to I2S.
Timers:
Five 32-bit general purpose timers/counters, four of which support up to four
capture inputs and four compare outputs, PWM mode, and external count input.
Specific timer events can be selected to generate DMA requests. The fifth timer
does not have external pin connections and may be used for internal timing
operations.
One SCT imer/PWM with eight input and ten output functions (including capture and
match). Inputs and outputs can be routed to or from external pins and internally to
or from selected periph erals. Internally, the SCTimer/PWM supports 16
match/captures, 16 events, and 16 states.
32-bit Real-time clo ck (RTC) with 1 s resolution running in the always-on power
domain. A timer in the RTC can be used for wake-up from all low power modes
including deep po wer -d o w n, with 1 ms reso lu tion .
Multiple-channel multi-rate 24-bit timer (MRT) for repetitive interrupt generation at
up to four programmable, fixed rates.
Windowed Watchdog Timer (WWDT).
Repetitive Interrupt Timer (RIT) for debug time stamping and for general purpose
use.
Security features:
Random number generator can be used to create keys with DMA support.
enhanced Code Read Protection (eCRP) to protect user code.
OTP memory for EC RP set ting s an d us er applica tio n sp ecific data.
Clock generation :
12 MHz internal Free Running Oscillator (FRO). This oscillator provides a
selecta ble 48 MHz or 96 MHz output, and a 12 MHz output (divid ed down from the
selected higher frequency) that can be used as a system clock. The FRO is
trimmed to 1 % accuracy over the entire voltage and temperature range.
External clock input for clock frequencies of up to 25 MHz.
Crystal oscillator with an operating range of 1 MHz to 25 MHz.
Watchdog Oscillator (WDTOSC) with a frequency range of 6 kHz to 1.5 MHz.
32.768 kHz low-power RTC oscillator.
System PLL allows CPU operation up to the maximum CPU rate and can run from
the main oscillator, the internal FRO, the watchdog oscillator or the 32.768 KHz
RTC oscillator.
Two additional PLLs for USB clock and audio subsystem.
Independent clocks for the SPIFI interface, ADC, USBs, and the audio subsystem.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 4 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Clock output function with divider.
Frequency measurement unit for measuring the frequency of any on-chip or
off-chip clock signal.
Power control:
Programmable PMU (Power Management Unit) to minimize power consumption
and to match requirements at different performance levels.
Reduced power modes: sleep , deep-sleep, and deep power-down.
Wa ke- u p fro m deep- sle ep mo de s du e to activity on the USART, SPI, and I2C
peripherals when operating as slaves.
Ultra-low power Micro-tick Timer, running from the Watchdog oscillator that can be
used to wake up the device from low power modes.
Power-On Reset (POR).
Brown-Out Detect (BOD) with separate thresholds for interr upt and forced reset.
Single power supply 1.71 V to 3.6 V.
Power-On Reset (POR).
Brown-Out Detect (BOD) with separate thresholds for interr upt and forced reset.
JTAG boundary scan supported.
128 bit unique device serial number for identification.
Operating temperature range 40 °C to +105 °C.
Available in TFBGA180 and LQFP208 packages.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 5 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
3. Ordering information
3.1 Ordering options
Table 1. Ordering information
Type number Package
Name Description Version
LPC54605J256ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54605J512ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54606J256ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54606J512BD208 LQFP208 plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
LPC54607J256ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54607J512ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54607J256BD208 LQFP208 plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
LPC54608J512ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54608J512BD208 LQFP208 plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
LPC54616J256ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54616J512BD208 LQFP208 plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
LPC54618J512ET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3
LPC54618J512BD208 LQFP208 plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
Table 2. Ordering options
Type number
Package Name
Flash/kB
SRAM/kB
FS USB
HS USB
Ethernet AVB
Classic CAN
CAN FD0/FD1
LCD
GPIO
LPC54618 devices (HS/FS USB, Ethernet, CAN FD, LCD)
LPC54618J512ET180 TFBGA180 512 200 yes yes yes yes yes yes 145
LPC54618J512BD208 LQFP208 512 200 yes yes yes yes yes yes 171
LPC54616 devices (HS/FS USB, Ethernet, CAN FD)
LPC54616J256ET180 TFBGA180 256 136 yes yes yes no yes no 145
LPC54616J512BD208 LQFP208 512 200 yes yes yes no yes no 171
LPC54608 devices (HS/FS USB, Ethernet, CAN 2.0, LCD)
LPC54608J512ET180 TFBGA180 512 200 yes yes yes yes no yes 145
LPC54608J512BD208 LQFP208 512 200 yes yes yes yes no yes 171
LPC54607 devices (HS/FS USB, LCD)
LPC54607J256ET180 TFBGA180 256 136 yes yes no no no yes 145
LPC54607J512ET180 TFBGA180 512 200 yes yes no no no yes 145
LPC54607J256BD208 LQFP208 256 136 yes yes no no no yes 171
LPC54606 devices (HS/FS USB, Ethernet, CAN 2.0)
LPC54606J256ET180 TFBGA180 256 136 yes yes yes yes no no 145
LPC54606J512BD208 LQFP208 512 200 yes yes yes yes no no 171
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 6 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
LPC54605 devices (HS/FS USB)
LPC54605J256ET180 TFBGA180 256 136 yes yes no no no no 145
LPC54605J512ET180 TFBGA180 512 200 yes yes no no no no 145
Table 2. Ordering options …continued
Type number
Package Name
Flash/kB
SRAM/kB
FS USB
HS USB
Ethernet AVB
Classic CAN
CAN FD0/FD1
LCD
GPIO
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 7 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
4. Marking
The LPC546xx TFBGA180 package has the following top-side marking:
First line: LPC546xxJyyy
yyy: flash size
Second line: ET180
Third line: xxxxxxxxxxxx
Fourth line: xxxyywwx[R]x
yyww: Date code with yy = year and ww = week.
xR = boot code version and device re vision.
The LPC546xx LQFP208 package has the following top-side marking:
First line: LPC546xxJyyy
yyy: flash size
Second line: BD208
Third line: xxxxxxxxxxxx
Fourth line: xxxyywwx[R]x
yyww: Date code with yy = year and ww = week.
xR = Boot code version and device revision.
Fig 1. TFBGA180 package marking Fig 2. LQFP208 package marking
Terminal 1 index area
aaa-025721
1
n
Terminal 1 index area
aaa-011231
Table 3. Device revision table
Revision identifier (R) Revision description
1A Initial device revision with Boo t ROM version 19.1
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 8 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
5. Block diagram
Figure 3 shows the LPC546xx block diagram. In this figure, orange shaded blocks support
general purpose DMA and yellow shaded blocks include dedicated DMA control.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 9 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 3. LPC5 4 6x x Bloc k dia gram
DEBUG INTERFACE
ISP access
port
JTAG test and
boundary scan
interface
ethernet
PHY interface
LCD
panel
SDIO
interface
CAN
interface
FS USB
bus or
transceiver
ARM CORTEX-M4
WITH FPU/MPU
D-code
bus
system
bus
I-code
bus
aaa-026740
GENERAL
PURPOSE
DMA
CONTROLLER
ETHERNET
10/100
MAC
+AVB
LCD
PANEL
INTERFACE
USB 2.0
HOST/
DEVICE
HD
SDIO CAN
FD
CAN
FD
clocks
and
controls
internal
power
CLOCK GENERATION,
POWER CONTROL,
AND OTHER
SYSTEM FUNCTIONS
VOLTAGE REGULATOR
Xtalin Xtalout RST
CLK
OUT
SPIFI
ADC
inputs
D[31:0]
A[25:0]
control
GPIO
Vdd
HS USB
PHY
BOOT ROM
64 kB
SRAM
32 kB
SRAM
32 kB
SRAM
32 kB
SRAM
32 kB
12b ADC
12-CH
TEMP
SENSOR
POLYFUSE OTP
256 b
STATIC/DYNAMIC EXT
MEMORY CONTROLLER
HS USB
HOST
REGISTERS
FS USB
HOST
REGISTERS
USB RAM
INTERFACE
SRAM
8 kB
EEPROM
UP TO 16 kB
SPI FLASH
INTERFACE
SRAM
64 kB
FLASH
INTERFACE
AND
ACCELERATOR
FLASH
512 MB
HS USB
bus
HS GPIO
0-5
FS USB
DEVICE
REGISTERS
LCD
REGISTERS
DMA
REGISTERS
EMC
REGISTERS
SPIFI
REGISTERS
MULTILAYER
AHB MATRIX
SCTimer/
PWM
FlexComms 0-4
-UARTs 0-4 - I2Cs 0-4
-SPI0s 0-4
CRC
ENGINE
HS USB
DEVICE
REGISTERS
AUDIO SUBSYS
D-MIC,
DECIMATOR, ETC
ETHERNET
REGISTERS
CAN 1
REGISTERS
AHB TO
APB BRIDGE
AHB TO
APB BRIDGE
ASYNC AHB TO
APB BRIDGE
CAN 0
REGISTERS
SYSTEM CONTROL
APB slave group 0
SDIO
REGISTERS
FlexComms 5-9
-UARTs 5-9
-SPI0s 5-9
-I2Cs 5-9 - I2Ss 0,1
I/O CONFIGURATION
Note:
- Orange shaded blocks support Gen. Purpose DMA.
- Yellow shaded blocks include dedicated DMA Ctrl.
GPIO GLOBAL INTRPTS (0, 1)
GPIO INTERRUPT CONTROL
PERIPH INPUT MUX SELECTS
2 x 32-BIT TIMERS (T0, 1)
PMU REGS (+BB, PVT)
APB slave group 1
32-BIT TIMERS (T2)
SYSTEM CONTROL (async regs)
APB slave group 2
2 x 32-BIT TIMERS (T3, 4)
OS TIMER
FLASH 0 REGISTERS
2 x SMARTCARDS
RANDOM NUMBER GEN
REAL TIME
CLOCK
32 kHz
Osc
RTC ALARM RTC POWER
DOMAIN
DIVIDER
MULTI-RATE TIMER
EEPROM REGISTERS
OTP CONTROLLER
WATCHDOG
OSC
WINDOWED WDT
MICRO TICK TIMER
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 10 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
6. Pinning information
6.1 Pinning
Fig 4. TFBGA 180 Pin configuration
Fig 5. LQFP 208 Pin c onfiguratio n
aaa-026026
2468101213141357911
ba ll A 1
inde x a re a
P
N
M
L
K
J
G
E
H
F
D
C
B
A
T ransparent top view
156
53
104
208
157
105
1
52
aaa-026027
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 11 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
6.2 Pin description
On the LPC546xx, digita l pins are grouped into several port s. Each digit al pin can suppor t
several different digital functions (including General Purpose I/O (GPIO)) and an
additional analog function.
Table 4. Pin de scription
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
PIO0_0 D6 196 [2] PU I/O PIO0_0 — General-purpose digital input/output pin.
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI SCK function.
ICAN1_RD — Receiver input for CAN 1.
I/O FC3_SCK — Flexcomm 3: USART or SPI clock.
OCTimer_MAT0 Match output 0 from Timer 0.
ISCT0_GPI[0] — Pin input 0 to SCTimer/PWM.
OPDM0_CLK — Clock for PDM interface 0, for digital microphone.
PIO0_1 A1 207 [2] PU I/O PIO0_1 — General-purpose digital input/output pin.
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI SSEL0
function.
OCAN1_TD — Transmitter ou tput for CAN 1.
I/O FC3_CTS_SDA_SSEL0 — Flexcomm 3: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
ICT0_CAP0 — Capture input 0 to Timer 0.
ISCT0_GPI[1] — Pin input 1 to SCTimer/PWM.
IPDM0_DATA — Data for PDM interface 0 (digital microphone).
PIO0_2/
TRST E9 174 [2] PU I/O PIO0_2 — General-purpose digital input/output pin. In boundary scan
mode: TRST (Test Reset).
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI MISO function.
I/O FC3_TXD_SCL_MISO — Flexcomm 3: USART transmitter, I2C clock, SPI
master-in/slave-out data.
ICT0_CAP1 — Capture input 1 to Timer 0.
OSCT0_OUT0 — SCTimer/PWM output 0.
ISCT0_GPI[2] — Pin input 2 to SCTimer/PWM.
I/O EMC_D[0] — External Memory interface data [0].
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 12 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_3/
TCK A10 178 [2] PU I/O PIO0_3General-purpose digital input/output pin. In boundary scan
mode: TCK (Test Clock In).
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI MOSI function.
I/O FC3_RXD_SDA_MOSIFlexcomm 3: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OCT0_MAT1Match output 1 from Timer 0.
OSCT0_OUT1 — SCTimer/PWM output 1.
ISCT0_GPI3 — Pin input 3 to SCTimer/PWM.
R — Reserved.
I/O EMC_D[1] — External Memory interface data [1].
PIO0_4/
TMS C8 185 [2] PU I/O PIO0_4 — General-purpose digital input/output pin. In boundary scan
mode: TMS (Test Mode Select).
Remark: The state of this pin at Reset in conjunction with PIO0_5 and
PIO0_6 will determine the boot source for the part or if ISP handler is
invoked. See the Boot Process chapter in UM10912 for more details.
ICAN0_RD — Receiver input for CAN 0.
I/O FC4_SCK — Flexcomm 4: USART or SPI clock.
ICT3_CAP0 — Capture input 0 to Timer 3.
ISCT0_GPI4 — Pin input 4 to SCTimer/PWM.
R — Reserved.
I/O EMC_D[2] — External Memory interface data [2].
OENET_MDC — Ethernet management data clock.
PIO0_5/
TDI E7 189 [2] PU I/O PIO0_5 — General-purpose digital input/output pin.
In boundary scan mode: TDI (Test Data In).
Remark: The state of this pin at Reset in conjunction with PIO0_4 and
PIO0_6 will determine the boot source for the part or if ISP handler is
invoked. See the Boot Process chapter in UM10912 for more details.
OCAN0_TD — Transmitter output for CAN 0.
I/O FC4_RXD_SDA_MOSIFlexcomm 4: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OCT3_MAT0Match output 0 from Timer 3.
ISCT0_GPI5 — Pin input 5 to SCTimer/PWM.
R — Reserved.
I/O EMC_D[3] — External Memory interface data [3].
I/O ENET_MDIO — Ethernet management data I/O.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 13 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_6/
TDO A5 191 [2] PU I/O PIO0_6 — General-purpose digital input/output pin. In boundary scan
mode: TDO (Test Data Out).
Remark: The state of this pin at Reset in conjunction with PIO0_4 and
PIO0_5 will determine the boot source for the part or if ISP handler is
invoked. See the Boot Process chapter in UM10912 for more details.
I/O FC3_SCK — Flexcomm 3: USART or SPI clock.
ICT3_CAP1 — Capture input 1 to Timer 3.
OCT4_MAT0Match output 0 from Timer 4.
ISCT0_GPI6 — Pin input 6 to SCTimer/PWM.
R — Reserved.
I/O EMC_D[4] — External Memory interface data [4].
IENET_RX_DV — Ethernet receive data valid.
PIO0_7 H12 125 [2] PU I/O PIO0_7 — General-purpose digital input/output pin.
I/O FC3_RTS_SCL_SSEL1 — Flexcomm 3: USART request-to-send, I2C
clock, SPI slave select 1.
OSD_CLK — SD/MMC clock.
I/O FC5_SCK — Flexcomm 5: USART or SPI clock.
I/O FC1_SCK — Flexcomm 1: USART or SPI clock.
OPDM1_CLK — Clock for PDM interface 1, for digital microphone.
I/O EMC_D[5] — External Memory interface data [5].
IENET_RX_CLK — Ethernet Receive Clock (MII interface) or Ethernet
Referenc e Cl o ck (RMII interface).
PIO0_8 H10 133 [2] PU I/O PIO0_8 — General-purpose digital input/output pin.
I/O FC3_SSEL3 — Flexcomm 3: SPI slave select 3.
I/O SD_CMD — SD/MMC card command I/O.
I/O FC5_RXD_SDA_MOSIFlexcomm 5: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OSWO — Serial Wire Debug trace output.
IPDM1_DATA — Data for PDM interface 1 (digital microphone).
I/O EMC_D[6] — External Memory interface data [6].
PIO0_9 G12 136 [2] PU I/O PIO0_9 — General-purpose digital input/output pin.
I/O FC3_SSEL2 — Flexcomm 3: SPI slave select 2.
OSD_POW_EN — SD/MMC card power enable.
I/O FC5_TXD_SCL_MISO — Flexcomm 5: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
I/O SCI1_IO — SmartCard Interface 1 data I/O.
I/O EMC_D[7] — External Memory interface data [7].
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 14 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_10/
ADC0_0 P2 50 [4] PU I/O;
AI PIO0_10/ADC0_0 — General-purpose digital input/output pin. ADC input
channel 0 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC6_SCK — Flexcomm 6: USART, SPI, or I2S clock.
ICT2_CAP2 — Capture input 2 to Timer 2.
OCT2_MAT0Match output 0 from Timer 2.
I/O FC1_TXD_SCL_MISO — Flexcomm 1: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
OSWO — Serial Wire Debug trace output.
PIO0_11/
ADC0_1 L3 51 [4] PU I/O;
AI PIO0_11/ADC0_1 — General-purpose digital input/output pin. ADC input
channel 1 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm 6: USART receiver, I2C data
I/O, SPI master-out/slave-in data, I2S data I/O.
OCT2_MAT2Match output 2 from Timer 2.
IFREQME_GPIO_CLK_A — Frequency Measure pin clock input A.
R — Reserved.
R — Reserved.
ISWCLK — Serial Wire Debug clock. This is the default function after
booting.
PIO0_12/
ADC0_2 M3 52 [4] PU I/O;
AI PIO0_12/ADC0_2 — General-purpose digital input/output pin. ADC input
channel 2 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC3_TXD_SCL_MISO — Flexcomm 3: USART transmitter, I2C clock, SPI
master-in/slave-ou t data.
R — Reserved.
IFREQME_GPIO_CLK_B — Frequency Measure pin clock input B.
ISCT0_GPI7 — Pin input 7 to SCTimer/PWM.
R — Reserved.
I/O SWDIO — Serial Wire Debug I/O. This is the default function after booting.
PIO0_13 F11 141 [3] ZI/OPIO0_13 — General-purpose digital input/output pin.
Remark: In ISP mode, this pin is set to the Flexcomm 1 I2C SDA function.
I/O FC1_CTS_SDA_SSEL0 — Flexcomm 1: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
IUTICK_CAP0 — Micro-tick timer capture input 0.
ICT0_CAP0 — Capture input 0 to Timer 0.
ISCT0_GPI0 — Pin input 0 to SCTimer/PWM.
R — Reserved.
R — Reserved.
IENET_RXD0 — Ethernet receive data 0.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 15 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_14 E13 144 [3] ZI/OPIO0_14 — General-purpose digital input/output pin.
Remark: In ISP mode, this pin is set to the Flexcomm 1 I2C SCL function.
I/O FC1_RTS_SCL_SSEL1 — Flexcomm 1: USART request-to-send, I2C
clock, SPI slave select 1.
IUTICK_CAP1 — Micro-tick timer capture input 1.
ICT0_CAP1 — Capture input 1 to Timer 0.
ISCT0_GPI1 — Pin input 1 to SCTimer/PWM.
R — Reserved.
R — Reserved.
IENET_RXD1 — Ethernet receive data 1.
PIO0_15/
ADC0_3 L4 53 [4] PU I/O;
AI PIO0_15/ADC0_3 — General-purpose digital input/output pin. ADC input
channel 3 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC6_CTS_SDA_SSEL0 — Flexcomm 6: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
IUTICK_CAP2 — Micro-tick timer capture input 2.
ICT4_CAP0 — Capture input 4 to Timer 0.
OSCT0_OUT2 — SCTimer/PWM output 2.
R — Reserved.
OEMC_WEN — External memory interface Wr ite Enable (active low).
OENET_TX_EN — Ethernet transmit enable (RMII/MII inte rface).
PIO0_16/
ADC0_4 M4 54 [4] PU I/O;
AI PIO0_16/ADC0_4 — General-purpose digital input/output pin. ADC input
channel 4 if the DIGIMODE bit is set to 0 in the IOCON register for this
pin.ws
I/O FC4_TXD_SCL_MISO — Flexcomm 4: USART transmitter, I2C clock, SPI
master-in/slave-out data.
OCLKOUT — Ou tput of the CLKOUT function.
ICT1_CAP0 — Capture input 0 to Timer 1.
R — Reserved.
R — Reserved.
OEMC_CSN[0] — External memory interface static chip select 0 (active low).
OENET_TXD0 — Ethernet transmit data 0.
PIO0_17 E14 146 [2] PU I/O PIO0_17 — General-purpose digital input/output pin.
I/O FC4_SSEL2 — Flexcomm 4: SPI slave select 2.
ISD_CARD_DET_N — SD/MMC card detect (active low).
ISCT0_GPI7 — Pin input 7 to SCTimer/PWM.
OSCT0_OUT0 — SCTimer/PWM output 0.
R — Reserved.
OEMC_OEN — External memory interface o utput enable (active low)
OENET_TXD1 — Ethernet transmit data 1.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 16 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_18 C14 150 [2] PU I/O PIO0_18 — General-purpose digital input/output pin.
I/O FC4_CTS_SDA_SSEL0 — Flexcomm 4: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
ISD_WR_PRT — SD/MMC write protect.
OCT1_MAT0Match output 0 from Timer 1.
OSCT0_OUT1 — SCTimer/PWM output 1.
OSCI1_SCLK — SmartCard Interface 1 clock.
OEMC_A[0] — External memory interface address 0.
PIO0_19 C6 193 [2] PU I/O PIO0_19 — General-purpose digital input/output pin.
I/O FC4_RTS_SCL_SSEL1 — Flexcomm 4: USART request-to-send, I2C
clock, SPI slave select 1.
IUTICK_CAP0 — Micro-tick timer capture input 0.
OCT0_MAT2Match output 2 from Timer 0.
OSCT0_OUT2 — SCTimer/PWM output 2.
R — Reserved.
OEMC_A[1] — External memory interface address 1.
I/O FC7_TXD_SCL_MISO_WSFlexcomm 7: USART transmitter, I2C clock,
SPI master-in/slave-out data I/O, I2S word-select/frame.
PIO0_20 D13 153 [2] PU I/O PIO0_20 — General-purpose digital input/output pin.
I/O FC3_CTS_SDA_SSEL0 — Flexcomm 3: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OCT1_MAT1Match output 1 from Timer 1.
ICT3_CAP3 — Capture input 3 to Timer 3.
ISCT0_GPI2 — Pin input 2 to SCTimer/PWM.
I/O SCI0_IO — SmartCard Interface 0 data I/O.
OEMC_A[2] — External memory interface address 2.
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm 7: USART receiver, I2C data
I/O, SPI master-out/slave-in data, I2S data I/O.
PIO0_21 C13 158 [2] PU I/O PIO0_21 — General-purpose digital input/output pin.
I/O FC3_RTS_SCL_SSEL1 — Flexcomm 3: USART request-to-send, I2C
clock, SPI slave select 1.
IUTICK_CAP3 — Micro-tick timer capture input 3.
OCT3_MAT3Match output 3 from Timer 3.
ISCT0_GPI3 — Pin input 3 to SCTimer/PWM.
OSCI0_SCLK — SmartCard Interface 0 clock.
OEMC_A[3] — External memory interface address 3.
I/O FC7_SCK — Flexcomm 7: USART, SPI, or I2S clock.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 17 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_22 B12 163 [2] PU I/O PIO0_22 — General-purpose digital input/output pin.
I/O FC6_TXD_SCL_MISO_WSFlexcomm 6: USART transmitter, I2C clock,
SPI master-in/slave-out data I/O, I2S word-select/frame.
IUTICK_CAP1 — Micro-tick timer capture input 1.
ICT3_CAP3 — Capture input 3 to Timer 3.
OSCT0_OUT3 — SCTimer/PWM output 3.
R — Reserved.
R — Reserved.
IUSB0_VBUS — Monitors the presence of USB0 bus power.
PIO0_23/
ADC0_11 N7 71 [4] PU I/O;
AI PIO0_23/ADC0_11 — General-purpose digital input/output pin. ADC input
channel 11 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O MCLK — MCLK input or output for I2S and/or digital microphone.
OCT1_MAT2Match output 2 from Timer 1.
OCT3_MAT3Match output 3 from Timer 3.
OSCT0_OUT4 — SCTimer/PWM output 4.
R — Reserved.
I/O SPIFI_CSN — SPI Flash Interface chip select (active low).
PIO0_24 M7 76 [2] PU I/O PIO0_24 — General-purpose digital input/output pin.
I/O FC0_RXD_SDA_MOSIFlexcomm 0: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
I/O SD_D[0] — SD/MMC data 0.
ICT2_CAP0 — Capture input 0 to Timer 2.
ISCT0_GPI0 — Pin input 0 to SCTimer/PWM.
R — Reserved.
I/O SPIFI_IO0 — Data bit 0 for the SPI Flash Interface.
PIO0_25 K8 83 [2] PU I/O PIO0_25 — General-purpose digital input/output pin.
I/O FC0_TXD_SCL_MISO — Flexcomm 0: USART transmitter, I2C clock, SPI
master-in/slave-out data.
I/O SD_D[1] — SD/MMC data 1.
ICT2_CAP1 — Capture input 1 to Timer 2.
ISCT0_GPI1 — Pin input 1 to SCTimer/PWM.
R — Reserved.
I/O SPIFI_IO1 — Data bit 1 for the SPI Flash Interface.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 18 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_26 M1
3110 [2] PU I/O PIO0_26 — General-purpose digital input/output pin.
I/O FC2_RXD_SDA_MOSIFlexcomm 2: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OCLKOUT — Ou tput of the CLKOUT function.
ICT3_CAP2 — Capture input 2 to Timer 3.
OSCT0_OUT5 — SCTimer/PWM output 5.
OPDM0_CLK — Clock for PDM interface 0, for digital microphone.
OSPIFI_CLK — Clock output for the SPI Flash Interface.
IUSB0_IDVALUEIndicates to the tran sceiver whether connected as an
A-device (USB0_ID LOW) or B-device (USB0_ID HIGH).
PIO0_27 L9 87 [2] PU I/O PIO0_27 — General-purpose digital input/output pin.
I/O FC2_TXD_SCL_MISO — Flexcomm 2: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
OCT3_MAT2Match output 2 from Timer 3.
OSCT0_OUT6 — SCTimer/PWM output 6.
IPDM0_DATA — Data for PDM interface 0 (digital microphone).
I/O SPIFI_IO3 — Data bit 3 for the SPI Flash Interface.
PIO0_28 M9 91 [2] PU I/O PIO0_28 — General-purpose digital input/output pin.
I/O FC0_SCK — Flexcomm 0: USART or SPI clock.
R — Reserved.
ICT2_CAP3 — Capture 3 input to Timer 2.
OSCT0_OUT7 — SCTimer/PWM output 7.
OTRACEDATA[3] — Trace data bit 3.
I/O SPIFI_IO2 — Data bit 2 for the SPI Flash Interface.
IUSB0_OVERCURRENTN — USB0 bus overcurrent indicator (active low).
PIO0_29 B13 167 [2] PU I/O PIO0_29 — General-purpose digital input/output pin.
Remark: In ISP mode, this pin is set to the Flexcomm 0 USART RXD
function.
I/O FC0_RXD_SDA_MOSIFlexcomm 0: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
R — Reserved.
OCT2_MAT3Match output 3 from Timer 2.
OSCT0_OUT8 — SCTimer/PWM output 8.
OTRACEDATA[2] — Trace data bit 2.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 19 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO0_30 A2 200 [2] PU I/O PIO0_30 — General-purpose digital input/output pin.
Remark: In ISP mode, this pin is set to the Flexcomm 0 USART TXD
function.
I/O FC0_TXD_SCL_MISO — Flexcomm 0: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
OCT0_MAT0Match output 0 from Timer 0.
OSCT0_OUT9 — SCTimer/PWM output 9.
OTRACEDATA[1] — Trace data bit 1.
PIO0_31/
ADC0_5 M5 55 [4] PU I/O;
AI PIO0_31/ADC0_5 — General-purpose digital input/output pin. ADC input
channel 5 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC0_CTS_SDA_SSEL0 — Flexcomm 0: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
I/O SD_D[2] — SD/MMC data 2.
OCT0_MAT1Match output 1 from Timer 0.
OSCT0_OUT3 — SCTimer/PWM output 3.
OTRACEDATA[0] — Trace data bit 0.
PIO1_0/
ADC0_6 N3 56 [4] PU I/O;
AI PIO1_0/ADC0_6 — General-purpose digital input/output pin. ADC input
channel 6 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC0_RTS_SCL_SSEL1 — Flexcomm 0: USART request-to-send, I2C
clock, SPI slave select 1.
I/O SD_D[3] — SD/MMC data 3.
ICT0_CAP2 — Capture 2 input to Timer 0.
ISCT0_GPI4 — Pin input 4 to SCTimer/PWM.
OTRACECLK — Trace clock.
PIO1_1 K12 109 [2] PU I/O PIO1_1 / — General-pu rpose digital input/output pin.
I/O FC3_RXD_SDA_MOSIFlexcomm 3: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
R — Reserved.
ICT0_CAP3 — Capture 3 input to Timer 0.
ISCT0_GPI5 — Pin input 5 to SCTimer/PWM.
R — Reserved.
R — Reserved.
IUSB1_OVERCURRENTN — USB1 bus overcurrent indicator (active low).
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 20 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_2 L14 117 [2] PU I/O PIO1_2 — General-purpose digital input/output pin.
OCAN0_TD — Transmitter output for CAN0.
R — Reserved.
OCT0_MAT3Match output 3 from Timer0.
ISCT0_GPI6 — Pin input 6 to SCTimer/PWM.
OPDM1_CLK — Clock for PDM interface 1, for digital microphone.
R — Reserved.
OUSB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS must
be driven).
PIO1_3 J13 120 [2] PU I/O PIO1_3General-purpose digital input/output pin.
ICAN0_RD — Receiver input for CAN0.
R — Reserved.
R — Reserved.
OSCT0_OUT4 — SCTimer/PWM output 4.
IPDM1_DATA — Data for PDM interface 1 (digital microphone).
OUSB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS must
be driven).
PIO1_4 D4 3 [2] PU I/O PIO1_4 — General-purpose digital input/output pin.
I/O FC0_SCK — Flexcomm 0: USART or SPI clock.
I/O SD_D[0] — SD/MMC data 0.
OCT2_MAT1Match output 1 from Timer 2.
OSCT0_OUT0 — SCTimer/PWM output 0.
IFREQME_GPIO_CLK_A — Frequency Measure pin clock input A.
I/O EMC_D[11]) — External Memory interface data [11].
PIO1_5 E4 5 [2] PU I/O PIO1_5 — General-purpose digital input/output pin.
I/O FC0_RXD_SDA_MOSIFlexcomm 0: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
I/O SD_D[2] — SD/MMC data 2.
OCT2_MAT0Match output 0 from Timer 2.
ISCT0_GPI0 — Pin input 0 to SCTimer/PWM.
R — Reserved.
OEMC_A[4] — External memory interface address 4.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 21 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_6 G4 30 [2] PU I/O PIO1_6 — General-purpose digital input/output pin.
I/O FC0_TXD_SCL_MISO — Flexcomm 0: USART transmitter, I2C clock, SPI
master-in/slave-out data.
I/O SD_D[3] — SD/MMC data 3.
OCT2_MAT1Match output 1 from Timer 2.
ISCT0_GPI3 — Pin input 3 to SCTimer/PWM.
R — Reserved.
OEMC_A[5] — External memory interface address 5.
PIO1_7 N1 38 [2] PU I/O PIO1_7 — General-purpose digital input/output pin.
I/O FC0_RTS_SCL_SSEL1 — Flexcomm 0: USART request-to-send, I2C
clock, SPI slave select 1.
I/O SD_D[1] — SD/MMC data 1.
OCT2_MAT2Match output 2 from Timer 2.
ISCT0_GPI4 — Pin input 4 to SCTimer/PWM.
R — Reserved.
OEMC_A[6] — External memory interface address 6.
PIO1_8 P8 72 [2] PU I/O PIO1_8 — General-purpose digital input/output pin.
I/O FC0_CTS_SDA_SSEL0 — Flexcomm 0: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OSD_CLK — SD/MMC clock.
R — Reserved.
OSCT0_OUT1 — SCTimer/PWM output 1.
I/O FC4_SSEL2 — Flexcomm 4: SPI slave select 2.
OEMC_A[7] — External memory interface address 7.
PIO1_9 K6 78 [2] PU I/O PIO1_9 — General-purpose digital input/output pin.
OENET_TXD0 — Ethernet transmit data 0.
I/O FC1_SCK — Flexcomm 1: USART or SPI clock.
ICT1_CAP0 — Capture 0 input to Timer 1.
OSCT0_OUT2 — SCTimer/PWM output 2.
I/O FC4_CTS_SDA_SSEL0 — Flexcomm 4: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OEMC_CASN — External memory interface column access strobe (active
low).
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 22 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_10 N9 84 [2] PU I/O PIO1_10 — General-purpose digital input/output pin.
OENET_TXD1 — Ethernet transmit data 1.
I/O FC1_RXD_SDA_MOSIFlexcomm 1: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OCT1_MAT0Match output 0 from Timer 1.
OSCT0_OUT3 — SCTimer/PWM output 3.
R — Reserved.
OEMC_RASN — External memory interface row address strobe (active low).
PIO1_11 B4 198 [2] PU I/O PIO1_11 — General-purpose digital input/output pin.
OENET_TX_EN — Ethernet transmit enable (RMII/MII interface).
I/O FC1_TXD_SCL_MISO — Flexcomm 1: USART transmitter, I2C clock, SPI
master-in/slave-out data.
ICT1_CAP1 — Capture 1 input to Timer 1.
IUSB0_VBUS — Monitors the presenc e of USB0 bu s po w er.
R — Reserved.
OEMC_CLK[0] — External memory interface clock 0.
PIO1_12 K9 128 [2] PU I/O PIO1_12 — General-purpose digital input/output pin.
IENET_RXD0 — Ethernet receive data 0.
I/O FC6_SCK — Flexcomm 6: USART, SPI, or I2S clock.
OCT1_MAT1Match output 1 from Timer 1.
OUSB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS must
be driven).
OEMC_DYCSN[0] — External Memory interface SDRAM chip select 0
(active low).
PIO1_13 G10 139 [2] PU I/O PIO1_13 — General-purpose digital input/output pin.
IENET_RXD1 — Ethernet receive data 1.
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm 6: USART receiver, I2C data
I/O, SPI master-out/slave-in data, I2S data I/O.
ICT1_CAP2 — Capture 2 input to Timer 1.
IUSB0_OVERCURRENTN — USB0 bus overcurrent indicator (active low).
OUSB0_FRAME — USB0 frame toggle signal.
OEMC_DQM[0] — External memory interface data mask 0.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 23 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_14 C12 160 [2] PU I/O PIO1_14 — General-purpose digital input/output pin.
IENET_RX_DV — Ethernet receive data valid.
IUTICK_CAP2 — Micro-tick timer capture input 2.
OCT1_MAT2Match output 2 from Timer 1.
I/O FC5_CTS_SDA_SSEL0 — Flexcomm 5: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OUSB0_LEDN — USB0-configured LED indicator (active low).
OEMC_DQM[1] — External memory interface data mask 0.
PIO1_15 A11 176 [2] PU I/O PIO1_15 — General-purpose digital input/output pin.
IENET_RX_CLK — Ethernet Receive Clock (MII interface) or Ethernet
Referenc e Cl o ck (RMII interface).
IUTICK_CAP3 — Micro-tick timer capture input 3.
ICT1_CAP3 — Capture 3 input to Timer 1.
I/O FC5_RTS_SCL_SSEL1 — Flexcomm 5: USART request-to-send, I2C
clock, SPI slave select 1.
I/O FC4_RTS_SCL_SSEL1 — Flexcomm 4: USART request-to-send, I2C
clock, SPI slave select 1.
OEMC_CKE[0] — External memory interface SDRAM clock enable 0.
PIO1_16 B7 187 [2] PU I/O PIO1_16 — General-purpose digital input/output pin.
OENET_MDC — Ethernet management data clock.
I/O FC6_TXD_SCL_MISO_WSFlexcomm 6: USART transmitter, I2C clock,
SPI master-in/slave-out data I/O, I2S word-select/frame.
OCT1_MAT3Match output 3 from Timer 1.
I/O SD_CMD — SD/MMC card command I/O.
R — Reserved.
OEMC_A[10] — External memory interface address 10.
PIO1_17 N12 98 [2] PU I/O PIO1_17 — General-purpose digital input/output pin.
I/O ENET_MDIO — Ethernet management data I/O.
I/O FC8_RXD_SDA_MOSIFlexcomm 8: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
R — Reserved.
OSCT0_OUT4 — SCTimer/PWM output 4.
OCAN1_TD — Transmitter ou tput for CAN 1.
OEMC_BLSN[0] — External memory interface byte lane sele ct 0 (active
low).
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 24 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_18 D1 15 [2] PU I/O PIO1_18 — General-purpose digital input/output pin.
R — Reserved.
I/O FC8_TXD_SCL_MISO — Flexcomm 8: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
OSCT0_OUT5 — SCTimer/PWM output 5.
ICAN1_RD — Receiver input for CAN 1.
OEMC_BLSN[1] — External memory interface byte lane sele ct 1 (active
low).
PIO1_19 L1 33 [2] PU I/O PIO1_19 — General-purpose digital input/output pin.
I/O FC8_SCK — Flexcomm 8: USART or SPI clock.
OSCT0_OUT7 — SCTimer/PWM output 7.
OCT3_MAT1Match output 1 from Timer 3.
ISCT0_GPI7 — Pin input 7 to SCTimer/PWM.
I/O FC4_SCK — Flexcomm 4: USART or SPI clock.
I/O EMC_D[8] — External Memory interface data [8].
PIO1_20 M1 35 [2] PU I/O PIO1_20 — General-purpose digital input/output pin.
I/O FC7_RTS_SCL_SSEL1 — Flexcomm 7: USART request-to-send, I2C
clock, SPI slave select 1.
R — Reserved.
ICT3_CAP2 — Capture 2 input to Timer 3.
R — Reserved.
I/O FC4_TXD_SCL_MISO — Flexcomm 4: USART transmitter, I2C clock, SPI
master-in/slave-out data.
I/O EMC_D[9] — External Memory interface data [9].
PIO1_21 N8 74 [2] PU I/O PIO1_21 — General-purpose digital input/output pin.
I/O FC7_CTS_SDA_SSEL0 — Flexcomm 7: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
R — Reserved.
OCT3_MAT2Match output 2 from Timer 3.
R — Reserved.
I/O FC4_RXD_SDA_MOSIFlexcomm 4: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
I/O EMC_D[10] — External Memo ry interface data [10].
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 25 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_22 P11 89 [2] PU I/O PIO1_22 — General-purpose digital input/output pin.
I/O FC8_RTS_SCL_SSEL1 — Flexcomm 8: USART request-to-send, I2C
clock, SPI slave select 1.
I/O SD_CMD — SD/MMC card command I/O.
OCT2_MAT3Match output 3 from Timer 2.
ISCT0_GPI5 — Pin input 5 to SCTimer/PWM.
I/O FC4_SSEL3 — Flexcomm 4: SPI slave select 3.
OEMC_CKE[1] — External memory interface SDRAM clock enable 1.
PIO1_23 M1
097 [2] PU I/O PIO1_23 — General-purpose digital input/output pin.
I/O FC2_SCK — Flexcomm 2: USART or SPI clock.
OSCT0_OUT0 — SCTimer/PWM output 0.
R — Reserved.
I/O ENET_MDIO — Ethernet management data I/O.
I/O FC3_SSEL2 — Flexcomm 3: SPI slave select 2.
OEMC_A[11] — External memory interface address 11.
PIO1_24 N14 111 [2] PU I/O PIO1_24 — General-purpose digital input/output pin.
I/O FC2_RXD_SDA_MOSIFlexcomm 2: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OSCT0_OUT1 — SCTimer/PWM output 1.
R — Reserved.
R — Reserved.
I/O FC3_SSEL3 — Flexcomm 3: SPI slave select 3.
OEMC_A[12] — External memory interface address 12.
PIO1_25 M1
2119 [2] PU I/O PIO1_25 — General-purpose digital input/output pin.
I/O FC2_TXD_SCL_MISO — Flexcomm 2: USART transmitter, I2C clock, SPI
master-in/slave-out data.
OSCT0_OUT2 — SCTimer/PWM output 2.
R — Reserved.
IUTICK_CAP0 — Micro-tick timer capture input 0.
R — Reserved.
OEMC_A[13] — External memory interface address 13.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 26 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_26 J10 131 [2] PU I/O PIO1_26 — General-purpose digital input/output pin.
I/O FC2_CTS_SDA_SSEL0 — Flexcomm 2: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OSCT0_OUT3 — SCTimer/PWM output 3.
ICT0_CAP3 — Capture 3 input to Timer 0.
IUTICK_CAP1 — Micro-tick timer capture input 1.
R — Reserved.
OEMC_A[8] — External memory interface address 8.
PIO1_27 F10 142 [2] PU I/O PIO1_27 — General-purpose digital input/output pin.
I/O FC2_RTS_SCL_SSEL1 — Flexcomm 2: USART request-to-send, I2C
clock, SPI slave select 1.
I/O SD_D[4] — SD/MMC data 4.
OCT0_MAT3Match output 3 from Timer 0.
OCLKOUT — Ou tput of the CLKOUT function.
R — Reserved.
OEMC_A[9] — External memory interface address 9.
PIO1_28 E12 151 [2] PU I/O PIO1_28 — General-purpose digital input/output pin.
I/O FC7_SCK — Flexcomm 7: USART, SPI, or I2S clock.
I/O SD_D[5] — SD/MMC data 5.
ICT0_CAP2 — Capture 2 input to Timer 0.
R — Reserved.
R — Reserved.
I/O EMC_D[12] — External Memo ry interface data [12].
PIO1_29 C11 165 [2] PU I/O PIO1_29 — Genera l-purpose digital input/output pin.
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm 7: USART receiver, I2C data
I/O, SPI master-out/slave-in data, I2S data I/O.
I/O SD_D[6] — SD/MMC data 6.
ISCT0_GPI6 — Pin input 6 to SCTimer/PWM.
OUSB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS must
be driven).
OUSB1_FRAME — USB1 frame toggle signal.
I/O EMC_D[13] — External Memo ry interface data [13].
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 27 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO1_30 A8 182 [2] PU I/O PIO1_30 — General-purpose digital input/output pin.
I/O FC7_TXD_SCL_MISO_WSFlexcomm 7: USART transmitter, I2C clock,
SPI master-in/slave-out data I/O, I2S word-select/frame.
I/O SD_D[7] — SD/MMC data 7.
ISCT0_GPI7 — Pin input 7 to SCTimer/PWM.
IUSB1_OVERCURRENTN — USB1 bus overcurrent indicator (active low).
OUSB1_LEDN — USB1-configured LED indicator (active low).
I/O EMC_D[14] — External Memo ry interface data [14].
PIO1_31 C5 195 [2] PU I/O PIO1_31 — General-purpose digital input/output pin.
I/O MCLK — MCLK input or output for I2S and/or digital microphone.
R — Reserved.
OCT0_MAT2Match output 2 from Timer 0.
OSCT0_OUT6 — SCTimer/PWM output 6.
I/O FC8_CTS_SDA_SSEL0 — Flexcomm 8: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
I/O EMC_D[15] — External Memo ry interface data [15].
PIO2_0/
ADC0_7 P3 57 [4] PU I/O;
AI PIO2_0/ADC0_7 — General-purpose digital input/output pin. ADC input
channel 7 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
R — Reserved.
I/O FC0_RXD_SDA_MOSIFlexcomm 0: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
R — Reserved.
OCT1_CAP0 — Capture input 0 to Timer 1.
PIO2_1/
ADC0_8 P4 58 [4] PU I/O;
AI PIO2_1/ADC0_8 — General-purpose digital input/output pin. ADC input
channel 8 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
R — Reserved.
I/O FC0_TXD_SCL_MISO — Flexcomm 0: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
OCT1_MAT0Match output 0 from Timer 1.
PIO2_2 C3 4 [2] PU I/O PIO2_2 — General-purpose digital input/output pin.
IENET_CRS — Ethernet Carrier Sense (MII interface) or Ethernet
Carrier Sense/Data Valid (RMII interface).
I/O FC3_SSEL3 — Flexcomm 3: SPI slave select 3.
OSCT0_OUT6 — SCTimer/PWM output 6.
OCT1_MAT1Match output 1 from Timer 1.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 28 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO2_3 B1 7 [2] PU I/O PIO2_3 — General-purpose digital input/output pin.
OENET_TXD2 — Ethernet transmit data 2 (MII interface).
OSD_CLK — SD/MMC clock.
I/O FC1_RXD_SDA_MOSIFlexcomm 1: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OCT2_MAT0Match output 0 from Timer 2.
PIO2_4 D3 9 [2] PU I/O PIO2_4 — General-purpose digital input/output pin.
OENET_TXD3 — Ethernet transmit data 3 (MII interface).
I/O SD_CMD — SD/MMC card command I/O.
I/O FC1_TXD_SCL_MISO — Flexcomm 1: USART transmitter, I2C clock, SPI
master-in/slave-out data.
OCT2_MAT1Match output 1 from Timer 2.
PIO2_5 C1 12 [2] PU I/O PIO2_5 — General-purpose digital input/output pin.
OENET_TX_ER — Ethernet Transmit Error (MII interface).
OSD_POW_EN — SD/MMC card power enable
I/O FC1_CTS_SDA_SSEL0 — Flexcomm 1: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OCT1_MAT2Match output 2 from Timer 1.
PIO2_6 F3 17 [2] PU I/O PIO2_6 — General-purpose digital input/output pin.
IENET_TX_CLK — Ethernet Transmit Clock (MII interface).
I/O SD_D[0] — SD/MMC data 0.
I/O FC1_RTS_SCL_SSEL1 — Flexcomm 1: USART request-to-send, I2C
clock, SPI slave select 1.
ICT0_CAP0 — Capture input 0 to Timer 0.
PIO2_7 J2 29 [2] PU I/O PIO2_7 — General-purpose digital input/output pin.
IENET_COL — Ethernet Collision detect (MII interface).
I/O SD_D(1) — SD/MMC data 1.
IFREQME_GPIO_CLK_B — Frequency Measure pin clock input B.
ICT0_CAP1 — Capture input 1 to Timer 0.
PIO2_8 F4 32 [2] PU I/O PIO2_8 — General-purpose digital input/output pin.
IENET_RXD2 — Ethernet Receive Data 2 (MII interface).
I/O SD_D[2] — SD/MMC data 2.
R — Reserved.
OCT0_MAT0Match output 0 from Timer 0.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 29 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO2_9 K2 36 [2] PU I/O PIO2_9 — General-purpose digital input/output pin.
IENET_RXD3 — Ethernet Receive Data 3 (MII interface).
I/O SD_D[3] — SD/MMC data 3.
R — Reserved.
OCT0_MAT1Match output 0 from Timer 1.
PIO2_10 P1 39 [2] PU I/O PIO2_10 — General-purpose digital input/output pin.
IENET_RX_ER — Ethernet receive error (RMII/MII interface).
ISD_CARD_DET_N — SD/MMC card detect (active low).
PIO2_11 K3 43 [2] PU I/O PIO2_11 — General-purpose digital input/output pin.
OLCD_PWR — LCD panel power enable.
OSD_VOLT[0] — SD/MMC card regulator voltage control [0].
R — Reserved.
I/O FC5_SCK — Flexcomm 5: USART or SPI clock.
PIO2_12 M2 45 [2] PU I/O PIO2_12 — General-purpose digital input/output pin.
OLCD_LE — LCD line end signal.
OSD_VOLT[1] — SD/MMC card regulator voltage control [1].
IUSB0_IDVALUEIndicates to the tran sceiver whether connected as an
A-device (USB0_ID LOW) or B-device (USB0_ID HIGH).
R — Reserved.
I/O FC5_RXD_SDA_MOSIFlexcomm 5: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
PIO2_13 P7 70 [2] PU I/O PIO2_13 — General-purpose digital input/output pin.
OLCD_DC LK — LCD panel clock.
OSD_VOLT[2] — SD/MMC card regulator voltage control [2].
R — Reserved.
I/O FC5_TXD_SCL_MISO — Flexcomm 5: USART transmitter, I2C clock, SPI
master-in/slave-out data.
PIO2_14 L7 77 [2] PU I/O PIO2_14 — General-purpose digital input/output pin.
OLCD_FP — LCD frame pulse (STN). Vertical synchronization pulse (TFT).
OUSB0_FRAME — USB0 frame toggle signal.
OUSB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS must
be driven).
OCT0_MAT2Match output 2 from Timer 0.
I/O FC5_CTS_SDA_SSEL0 — Flexcomm 5: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 30 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO2_15 M8 79 [2] PU I/O PIO2_15 — General-purpose digital input/output pin.
OLCD_AC — LCD STN AC bias drive or TFT data enable output.
OUSB0_LEDN — USB0-configured LED indicator (active low).
IUSB0_OVERCURRENTN — USB0 bus overcurrent indicator (active low).
OCT0_MAT3Match output 3 from Timer 0.
I/O FC5_RTS_SCL_SSEL1 — Flexcomm 5: USART request-to-send, I2C
clock, SPI slave select 1.
PIO2_16 L8 81 [2] PU I/O PIO2_16 — General-purpose digital input/output pin.
OLCD_LP — LCD line synchronizatio n pulse (STN). Horizontal
synchronization pulse (TFT).
OUSB1_FRAME — USB1 frame toggle signal.
OUSB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS must
be driven).
OCT1_MAT3Match output 3 from Timer 1.
I/O FC8_SCK — Flexcomm 8: USART or SPI clock.
PIO2_17 P10 86 [2] PU I/O PIO2_17 — General-purpose digital input/output pin.
ILCD_CLKIN — LCD clock input.
OUSB1_LEDN — USB1-configured LED indicator (active low).
IUSB1_OVERCURRENTN — USB1 bus overcurrent indicator (active low).
ICT1_CAP1 — Capture 1 input to Timer 1.
I/O FC8_RXD_SDA_MOSIFlexcomm 8: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
PIO2_18 N10 90 [2] PU I/O PIO2_18 — General-purpose digital input/output pin.
OLCD_VD[0] — LCD Data [0].
I/O FC3_RXD_SDA_MOSIFlexcomm 3: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
I/O FC7_SCK — Flexcomm 7: USART, SPI, or I2S clock.
OCT3_MAT0Match output 0 from Timer 3.
PIO2_19 P12 93 [2] PU I/O PIO2_19 — General-purpose digital input/output pin.
OLCD_VD[1] — LCD Data [1].
I/O FC3_TXD_SCL_MISO — Flexcomm 3: USART transmitter, I2C clock, SPI
master-in/slave-out data.
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm 7: USART receiver, I2C data
I/O, SPI master-out/slave-in data, I2S data I/O.
OCT3_MAT1Match output 1 from Timer 3.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 31 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO2_20 P13 95 [2] PU I/O PIO2_20 — General-purpose digital input/output pin.
OLCD_VD[2] — LCD Data [2].
I/O FC3_RTS_SCL_SSEL1 — Flexcomm 3: USART request-to-send, I2C
clock, SPI slave select 1.
I/O FC7_TXD_SCL_MISO_WSFlexcomm 7: USART transmitter, I2C clock,
SPI master-in/slave-out data I/O, I2S word-select/frame.
OCT3_MAT2Match output 2 from Timer 3.
ICT4_CAP0 — Capture input 4 to Timer 0.
PIO2_21 L10 99 [2] PU I/O PIO2_21 — General-purpose digital input/output pin.
OLCD_VD[3] — LCD Data [3].
I/O FC3_CTS_SDA_SSEL0 — Flexcomm 3: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
I/O MCLK — MCLK input or output for I2S and/or digital microphone.
OCT3_MAT3Match output 3 from Timer 3.
PIO2_22 K10 113 [2] PU I/O PIO2_22 — General-purpose digital input/output pin.
OLCD_VD[4] — LCD Data [4].
OSCT0_OUT7 — SCTimer/PWM output 7.
R — Reserved.
ICT2_CAP0 — Capture input 0 to Timer 2.
PIO2_23 M1
4115 [2] PU I/O PIO2_23 — General-purpose digital input/output pin.
OLCD_VD[5] — LCD Data [5].
OSCT0_OUT8 — SCTimer/PWM output 8.
PIO2_24 K14 118 [2] PU I/O PIO2_24 — General-purpose digital input/output pin.
OLCD_VD[6] — LCD Data [6].
OSCT0_OUT9 — SCTimer/PWM output 9.
PIO2_25 J11 121 [2] PU I/O PIO2_25 — General-purpose digital input/output pin.
OLCD_VD[7] — LCD Data [7].
IUSB0_VBUS — Monitors the presenc e of USB0 bu s po w er.
PIO2_26 H11 124 [2] PU I/O PIO2_26 — General-purpose digital input/output pin.
OLCD_VD[8] — LCD Data [8].
R — Reserved.
I/O FC3_SCK — Flexcomm 3: USART or SPI clock.
ICT2_CAP1 — Capture input 1 to Timer 2.
PIO2_27 H14 130 [2] PU I/O PIO2_27 — General-purpose digital input/output pin.
OLCD_VD[9] — LCD Data [9].
I/O FC9_SCK — Flexcomm 9: USART or SPI clock.
I/O FC3_SSEL2 — Flexcomm 3: SPI slave select 2.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 32 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO2_28 G13 134 [2] PU I/O PIO2_28 — General-purpose digital input/output pin.
OLCD_VD[10]) — LCD Data [10].
I/O FC7_CTS_SDA_SSEL0 — Flexcomm 7: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
R — Reserved
ICT2_CAP2 — Capture input 2 to Timer 2.
PIO2_29 G11 137 [2] PU I/O PIO2_29 — General-purpose digital input/output pin.
OLCD_VD[11] — LCD Data [11].
I/O FC7_RTS_SCL_SSEL1 — Flexcomm 7: USART request-to-send, I2C
clock, SPI slave select 1.
I/O FC8_TXD_SCL_MISO — Flexcomm 8: USART transmitter, I2C clock, SPI
master-in/slave-out data.
ICT2_CAP3 — Capture 3 input to Timer 2.
OCLKOUT — Ou tput of the CLKOUT function.
PIO2_30 F12 143 [2] PU I/O PIO2_30 — General-purpose digital input/output pin.
OLCD_VD[12] — LCD Data [12].
R — Reserved.
R — Reserved.
OCT2_MAT2Match output 2 from Timer 2.
PIO2_31 D14 149 [2] PU I/O PIO2_31 — General-purpose digital input/output pin.
OLCD_VD[13] — LCD Data [13].
PIO3_0 D12 155 [2] PU I/O PIO3_0 — General-purpose digital input/output pin.
OLCD_VD[14] — LCD Data [14].
OPDM0_CLK — Clock for PDM interface 0, for digital microphone.
R — Reserved.
OCT1_MAT0Match output 0 from Timer 1.
PIO3_1 D11 159 [2] PU I/O PIO3_1 — General-purpose digital input/output pin.
OLCD_VD[15] — LCD Data [15].
IPDM0_DATA — Data for PDM interface 0 (digital microphone).
R — Reserved.
OCT1_MAT1Match output 1 from Timer 1.
PIO3_2 C10 164 [2] PU I/O PIO3_2 — General-purpose digital input/output pin.
OLCD_VD[16] — LCD Data [16].
I/O FC9_RXD_SDA_MOSIFlexcomm 9: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
R — Reserved.
OCT1_MAT2Match output 2 from Timer 1.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 33 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO3_3 A13 169 [2] PU I/O PIO3_3General-purpose digital input/output pin.
OLCD_VD[17] — LCD Data [17].
I/O FC9_TXD_SCL_MISO — Flexcomm 9: USART transmitter, I2C clock, SPI
master-in/slave-out data.
PIO3_4 B11 172 [2] PU I/O PIO3_4 — General-purpose digital input/output pin.
OLCD_VD[18] — LCD Data [18].
R — Reserved.
I/O FC8_CTS_SDA_SSEL0 — Flexcomm 8: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
ICT4_CAP1 — Capture input 4 to Timer 1.
PIO3_5 B10 177 [2] PU I/O PIO3_5General-purpose digital input/output pin.
OLCD_VD[19] — LCD Data [19].
R — Reserved.
I/O FC8_RTS_SCL_SSEL1 — Flexcomm 8: USART request-to-send, I2C
clock, SPI slave select 1.
OCT4_MAT1Match output 1 from Timer 4.
PIO3_6 C9 180 [2] PU I/O PIO3_6 — General-purpose digital input/output pin.
OLCD_VD[20] — LCD Data [20].
OLCD_VD[0] — LCD Data [0].
R — Reserved.
OCT4_MAT2Match output 2 from Timer 4.
PIO3_7 B8 184 [2] PU I/O PIO3_7 — General-purpose digital input/output pin.
OLCD_VD[21] — LCD Data [21].
OLCD_VD[1] — LCD Data [1].
R — Reserved.
ICT4_CAP2 — Capture input 2 to Timer 4.
PIO3_8 A7 186 [2] PU I/O PIO3_8 — General-purpose digital input/output pin.
OLCD_VD[22] — LCD Data [22].
OLCD_VD[2] — LCD Data [2].
R — Reserved.
ICT4_CAP3 — Capture input 3 to Timer 4.
PIO3_9 C7 192 [2] PU I/O PIO3_9 — General-purpose digital input/output pin.
OLCD_VD[23] — LCD Data [23].
OLCD_VD[3] — LCD Data [3].
R — Reserved.
ICT0_CAP2 — Capture input 2 to Timer 0.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 34 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO3_10 A3 199 [2] I/O PIO3_10 — General-purpose digital input/output pin.
OSCT0_OUT3 — SCTimer/PWM output 3.
R — Reserved.
OCT3_MAT0Match output 0 from Timer 3.
R — Reserved.
R — Reserved.
OEMC_DYCSN[1] — External Memory interface SDRAM chip select 1(active
low).
OTRACEDATA[0] — Trace data bit 0.
PIO3_11 B2 208 [2] PU I/O PIO3_11 — General-purpose digital input/output pin.
I/O MCLK — MCLK input or output for I2S and/or digital microphone.
I/O FC0_SCK — Flexcomm 0: USART or SPI clock.
I/O FC1_SCK — Flexcomm 1: USART or SPI clock.
R — Reserved.
R — Reserved.
R — Reserved.
OTRACEDATA[3] — Trace data bit 3.
PIO3_12 L2 37 [2] PU I/O PIO3_12 — General-purpose digital input/output pin.
OSCT0_OUT8 — SCTimer/PWM output 8.
R — Reserved.
ICT3_CAP0 — Capture input 0 to Timer 3.
R — Reserved.
OCLKOUT — Ou tput of the CLKOUT function.
OEMC_CLK[1] — External memory interface clock 1.
OTRACECLK — Trace clock.
PIO3_13 H4 75 [2] PU I/O PIO3_13 — General-purpose digital input/output pin.
OSCT0_OUT9 — SCTimer/PWM output 9.
I/O FC9_CTS_SDA_SSEL0 — Flexcomm 9: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
ICT3_CAP1 — Capture input 1 to Timer 3.
R — Reserved.
R — Reserved.
IEMC_FBCK — External memory interface feedback clock.
OTRACEDATA[1] — Trace data bit 1.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 35 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO3_14 E3 13 [2] PU I/O PIO3_14 — General-purpose digital input/output pin.
OSCT0_OUT4 — SCTimer/PWM output 4.
I/O FC9_RTS_SCL_SSEL1 — Flexcomm 9: USART request-to-send, I2C
clock, SPI slave select 1.
OCT3_MAT1Match output 1 from Timer 3.
R — Reserved.
R — Reserved.
R — Reserved.
OTRACEDATA[2] — Trace data bit 2.
PIO3_15 D2 11 [2] PU I/O PIO3_15 — General-purpose digital input/output pin.
I/O FC8_SCK — Flexcomm 8: USART or SPI clock.
ISD_WR_PRT — SD/MMC write protect.
PIO3_16 E1 19 [2] PU I/O PIO3_16 — General-purpose digital input/output pin.
I/O FC8_RXD_SDA_MOSIFlexcomm 8: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
I/O SD_D[4] — SD/MMC data 4.
PIO3_17 K1 31 [2] PU I/O PIO3_17 — General-purpose digital input/output pin.
I/O FC8_TXD_SCL_MISO — Flexcomm 8: USART transmitter, I2C clock, SPI
master-in/slave-out data.
I/O SD_D[5] — SD/MMC data 5.
PIO3_18 M6 68 [2] PU I/O PIO3_18 — General-purpose digital input/output pin.
I/O FC8_CTS_SDA_SSEL0 — Flexcomm 8: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
I/O SD_D[6] — SD/MMC data 6.
OCT4_MAT0Match output 0 from Timer 4.
OCAN0_TD — Transmitter ou tput for CAN 0.
OSCT0_OUT5 — SCTimer/PWM output 5.
PIO3_19 J3 44 [2] PU I/O PIO3_19 — General-purpose digital input/output pin.
I/O FC8_RTS_SCL_SSEL1 — Flexcomm 8: USART request-to-send, I2C
clock, SPI slave select 1.
I/O SD_D[7] — SD/MMC data 7.
OCT4_MAT1Match output 1 from Timer 4.
ICAN0_RD — Receiver input for CAN 0.
OSCT0_OUT6 — SCTimer/PWM output 6.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 36 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO3_20 N2 46 [2] PU I/O PIO3_20 — General-purpose digital input/output pin.
I/O FC9_SCK — Flexcomm 9: USART or SPI clock.
ISD_CARD_INT_N —
OCLKOUT — Ou tput of the CLKOUT function.
R — Reserved.
OSCT0_OUT7 — SCTimer/PWM output 7.
PIO3_21/
ADC0_9 P5 61 [4] PU I/O;
AI PIO3_21/ADC0_9 — General-purpose digital input/output pin. ADC input
channel 9 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC9_RXD_SDA_MOSIFlexcomm 9: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OSD_BACKEND_PWR — SD/MMC back-end power supply fo r embedded
device.
OCT4_MAT3Match output 3 from Timer 4.
IUTICK_CAP2 — Micro-tick timer capture input 2.
PIO3_22/
ADC0_10 N5 62 [4] PU I/O;
AI PIO3_22/ADC0_10 — General-purpose digital input/output pin. ADC input
channel 10 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.
I/O FC9_TXD_SCL_MISO — Flexcomm 9: USART transmitter, I2C clock, SPI
master-in/slave-out data.
PIO3_23 C2 8 [2] PU I/O PIO3_23 — General-purpose digital input/output pin.
I/O FC2_CTS_SDA_SSEL0 — Flexcomm 2: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
R — Reserved.
IUTICK_CAP3 — Micro-tick timer capture input 3.
PIO3_24 E2 16 [2] PU I/O PIO3_24 — General-purpose digital input/output pin.
I/O FC2_RTS_SCL_SSEL1 — Flexcomm 2: USART request-to-send, I2C
clock, SPI slave select 1.
ICT4_CAP0 — Capture input 4 to Timer 0.
IUSB0_VBUS — Monitors the presenc e of USB0 bu s po w er.
PIO3_25 P9 82 [2] PU I/O PIO3_25 — General-purpose digital input/output pin.
R — Reserved.
ICT4_CAP2 — Capture input 2 to Timer 4.
I/O FC4_SCK — Flexcomm 4: USART or SPI clock.
R — Reserved.
R — Reserved.
OEMC_A[14] — External memory interface address 14.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 37 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO3_26 K5 88 [2] PU I/O PIO3_26 — General-purpose digital input/output pin.
R — Reserved.
OSCT0_OUT0 — SCTimer/PWM output 0.
I/O FC4_RXD_SDA_MOSIFlexcomm 4: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
R — Reserved.
R — Reserved.
OEMC_A[15] — External memory interface address 15.
PIO3_27 P14 96 [2] PU I/O PIO3_27 — General-purpose digital input/output pin.
R — Reserved.
OSCT0_OUT1 — SCTimer/PWM output 1.
I/O FC4_TXD_SCL_MISO — Flexcomm 4: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
R — Reserved.
OEMC_A[16] — External memory interface address 16.
PIO3_28 M11 100 [2] PU I/O PIO3_28 — General-purpose digital input/output pin.
R — Reserved.
OSCT0_OUT2 — SCTimer/PWM output 2.
I/O FC4_CTS_SDA_SSEL0 — Flexcomm 4: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
R — Reserved.
R — Reserved.
OEMC_A[17] — External memory interface address 17.
PIO3_29 L13 112 [2] PU I/O PIO3_29 — General-purpose digital input/output pin.
R — Reserved.
OSCT0_OUT3 — SCTimer/PWM output 3.
I/O FC4_RTS_SCL_SSEL1 — Flexcomm 4: USART request-to-send, I2C
clock, SPI slave select 1.
R — Reserved.
R — Reserved.
OEMC_A[18] — External memory interface address 18.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 38 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO3_30 K13 116 [2] PU I/O PIO3_30 — General-purpose digital input/output pin.
I/O FC9_CTS_SDA_SSEL0 — Flexcomm 9: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OSCT0_OUT4 — SCTimer/PWM output 4.
I/O FC4_SSEL2 — Flexcomm 4: SPI slave select 2.
R — Reserved.
R — Reserved.
OEMC_A[19] — External memory interface address 19.
PIO3_31 J14 123 [2] PU I/O PIO3_31 — General-purpose digital input/output pin.
I/O FC9_RTS_SCL_SSEL1 — Flexcomm 9: USART request-to-send, I2C
clock, SPI slave select 1.
OSCT0_OUT5 — SCTimer/PWM output 5.
OCT4_MAT2Match output 2 from Timer 4.
R — Reserved.
ISCT0_GPI0 — Pin input 0 to SCTimer/PWM.
OEMC_A[20] — External memory interface address 20.
PIO4_0 H13 127 [2] PU I/O PIO4_0 — General-purpose digital input/output pin.
R — Reserved.
I/O FC6_CTS_SDA_SSEL0 — Flexcomm 6: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
ICT4_CAP1 — Capture input 4 to Timer 1.
R — Reserved.
ISCT0_GPI1 — Pin input 1 to SCTimer/PWM.
OEMC_CSN[1] — External memory interface static chip select 1(active low).
PIO4_1 G14 132 [2] PU I/O PIO4_1 — General-purpose digital input/output pin.
R — Reserved.
I/O FC6_SCK — Flexcomm 6: USART, SPI, or I2S clock.
R — Reserved.
R — Reserved.
ISCT0_GPI2 — Pin input 2 to SCTimer/PWM.
OEMC_CSN[2] — External memory interface static chip select 2 (active low).
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 39 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO4_2 F14 138 [2] PU I/O PIO4_2 — General-purpose digital input/output pin.
R — Reserved.
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm 6: USART receiver, I2C data
I/O, SPI master-out/slave-in data, I2S data I/O.
R — Reserved.
R — Reserved.
ISCT0_GPI3 — Pin input 3 to SCTimer/PWM.
OEMC_CSN[3] — External memory interface static chip select 3 (active low).
PIO4_3 F13 140 [2] PU I/O PIO4_3 — General-purpose digital input/output pin.
R — Reserved.
I/O FC6_TXD_SCL_MISO_WSFlexcomm 6: USART transmitter, I2C clock,
SPI master-in/slave-out data I/O, I2S word-select/frame.
ICT0_CAP3 — Capture 3 input to Timer 0.
R — Reserved.
ISCT0_GPI4 — Pin input 4 to SCTimer/PWM.
OEMC_DYCSN[2] — External Memory interface SDRAM chip select 2
(active low).
PIO4_4 D9 147 [2] PU I/O PIO4_4 — General-purpose digital input/output pin.
R — Reserved.
I/O FC4_SSEL3 — Flexcomm 4: SPI slave select 3.
I/O FC0_RTS_SCL_SSEL1 — Flexcomm 0: USART request-to-send, I2C
clock, SPI slave select 1.
R — Reserved.
ISCT0_GPI5 — Pin input 5 to SCTimer/PWM.
OEMC_DYCSN[3] — External Memory interface SDRAM chip select 3
(active low).
PIO4_5 E10 154 [2] PU I/O PIO4_5General-purpose digital input/output pin.
R — Reserved.
I/O FC9_CTS_SDA_SSEL0 — Flexcomm 9: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
I/O FC0_CTS_SDA_SSEL0 — Flexcomm 0: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OCT4_MAT3Match output 3 from Timer 4.
ISCT0_GPI6 — Pin input 6 to SCTimer/PWM.
OEMC_CKE[2] — External memory interface SDRAM clock enable 2.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 40 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO4_6 D10 161 [2] PU I/O PIO4_6 — General-purpose digital input/output pin.
R — Reserved.
I/O FC9_RTS_SCL_SSEL1 — Flexcomm 9: USART request-to-send, I2C
clock, SPI slave select 1.
R — Reserved.
R — Reserved.
ISCT0_GPI7 — Pin input 7 to SCTimer/PWM.
OEMC_CKE[3] — External memory interface SDRAM clock enable 3.
PIO4_7 A14 166 [2] PU I/O PIO4_7General-purpose digital input/output pin.
R — Reserved.
ICT4_CAP3 — Capture input 3 to Timer 4.
OUSB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS must
be driven).
OUSB0_FRAME — USB0 frame toggle signal.
ISCT0_GPI0 — Pin input 0 to SCTimer/PWM.
PIO4_8 B14 170 [2] PU I/O PIO4_8General-purpose digital input/output pin.
OENET_TXD0 — Ethernet transmit data 0.
I/O FC2_SCK — Flexcomm 2: USART or SPI clock.
IUSB0_OVERCURRENTN — USB0 bus overcurrent indicator (active low).
OUSB0_LEDN — USB0-configured LED indicator (active low).
ISCT0_GPI1 — Pin input 1 to SCTimer/PWM.
PIO4_9 A12 173 [2] PU I/O PIO4_9General-purpose digital input/output pin.
OENET_TXD1 — Ethernet transmit data 1.
I/O FC2_RXD_SDA_MOSIFlexcomm 2: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OUSB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS must
be driven).
OUSB1_FRAME — USB1 frame toggle signal.
ISCT0_GPI2 — Pin input 2 to SCTimer/PWM.
PIO4_10 B9 181 [2] PU I/O PIO4_10 — General-purpose digital input/output pin.
IENET_RX_DV — Ethernet receive data valid.
I/O FC2_TXD_SCL_MISO — Flexcomm 2: USART transmitter, I2C clock, SPI
master-in/slave-out data.
IUSB1_OVERCURRENTN — USB1 bus overcurrent indicator (active low).
OUSB1_LEDN — USB1-configured LED indicator (active low).
SCT0_GPI3 — Pin input 3 to SCTimer/PWM.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 41 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO4_11 A9 183 [2] PU I/O PIO4_11 — General-purpose digital input/output pin.
IENET_RXD0 — Ethernet receive data 0.
I/O FC2_CTS_SDA_SSEL0 — Flexcomm 2: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
IUSB0_IDVALUEIndicates to the tran sceiver whether connected as an
A-device (USB0_ID LOW) or B-device (USB0_ID HIGH).
R — Reserved.
ISCT0_GPI4 — Pin input 4 to SCTimer/PWM.
PIO4_12 A6 188 [2] PU I/O PIO4_12 — General-purpose digital input/output pin.
IENET_RXD1 — Ethernet receive data 1.
I/O FC2_RTS_SCL_SSEL1 — Flexcomm 2: USART request-to-send, I2C
clock, SPI slave select 1.
R — Reserved.
ISCT0_GPI5 — Pin input 5 to SCTimer/PWM.
PIO4_13 B6 190 [2] PU I/O PIO4_13 — General-purpose digital input/output pin.
OENET_TX_EN — Ethernet transmit enable (RMII/MII interface).
OCT4_MAT0Match output 0 from Timer 4.
R — Reserved.
ISCT0_GPI6 — Pin input 6 to SCTimer/PWM.
PIO4_14 B5 194 [2] PU I/O PIO4_14 — General-purpose digital input/output pin.
IENET_RX_CLK — Ethernet Receive Clock (MII interface) or Ethernet
Referenc e Cl o ck (RMII interface).
OCT4_MAT1Match output 1 from Timer 4.
I/O FC9_SCK — Flexcomm 9: USART or SPI clock.
R — Reserved.
ISCT0_GPI7 — Pin input 7 to SCTimer/PWM.
PIO4_15 A4 197 [2] PU I/O PIO4_15 — General-purpose digital input/output pin.
OENET_MDC — Ethernet management data clock.
OCT4_MAT2Match output 2 from Timer 4.
I/O FC9_RXD_SDA_MOSIFlexcomm 9: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
PIO4_16 C4 203 [2] PU I/O PIO4_16 — General-purpose digital input/output pin.
I/O ENET_MDIO — Ethernet management data I/O.
OCT4_MAT3Match output 3 from Timer 4.
I/O FC9_TXD_SCL_MISO — Flexcomm 9: USART transmitter, I2C clock, SPI
master-in/slave-out data.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 42 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO4_17 - 6 [2] PU I/O PIO4_17 — General-purpose digital input/output pin.
R — Reserved.
OCAN1_TD — Transmitter ou tput for CAN 1.
ICT1_CAP2 — Capture 2 input to Timer 1.
IUTICK_CAP0 — Micro-tick timer capture input 0.
R — Reserved.
OEMC_BLSN[2] — External memory interface byte lane sele ct 2 (active
low).
PIO4_18 - 10 [2] PU I/O PIO4_18 — General-purpose digital input/output pin.
R — Reserved.
ICAN1_RD — Receiver input for CAN 1.
ICT1_CAP3 — Capture 3 input to Timer 1.
IUTICK_CAP1 — Micro-tick timer capture input 1.
R — Reserved.
OEMC_BLSN[3] — External memory interface byte lane sele ct 3 (active
low).
PIO4_19 - 14 [2] PU I/O PIO4_19 — General-purpose digital input/output pin.
OENET_TXD0 — Ethernet transmit data 0.
OSD_CLK — SD/MMC clock.
I/O FC2_SCK — Flexcomm 2: USART or SPI clock.
ICT4_CAP2 — Capture input 2 to Timer 4.
R — Reserved.
OEMC_DQM[2] — External memory interface data mask 2.
PIO4_20 - 18 [2] PU I/O PIO4_20 — General-purpose digital input/output pin.
OENET_TXD1 — Ethernet transmit data 1.
I/O SD_CMD — SD/MMC card command I/O.
I/O FC2_RXD_SDA_MOSIFlexcomm 2: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
ICT4_CAP3 — Capture input 3 to Timer 4.
R — Reserved.
OEMC_DQM[3] — External memory interface data mask 3.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 43 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO4_21 - 34 [2] PU I/O PIO4_21 — General-purpose digital input/output pin.
OENET_TXD2 — Ethernet transmit data 2 (MII interface).
OSD_POW_EN — SD/MMC card power enable.
I/O FC2_TXD_SCL_MISO — Flexcomm 2: USART transmitter, I2C clock, SPI
master-in/slave-out data.
OCT2_MAT3Match output 3 from Timer 2.
R — Reserved.
I/O EMC_D[16] — External Memo ry interface data [16].
PIO4_22 - 47 [2] PU I/O PIO4_22 — General-purpose digital input/output pin.
OENET_TXD3 — Ethernet transmit data 3 (MII interface).
ISD_CARD_DET_N — SD/MMC card detect (active low).
I/O FC2_RTS_SCL_SSEL1 — Flexcomm 2: USART request-to-send, I2C
clock, SPI slave select 1.
OCT1_MAT3Match output 3 from Timer 1.
R — Reserved.
I/O EMC_D[17] — External Memo ry interface data [17].
PIO4_23 - 42 [2] PU I/O PIO4_23 — General-purpose digital input/output pin.
IENET_RXD0 — Ethernet receive data 0.
ISD_WR_PRT — SD/MMC write protect.
I/O FC2_CTS_SDA_SSEL0 — Flexcomm 2: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
R — Reserved.
OCT1_MAT0Match output 0 from Timer 1.
I/O EMC_D[18] — External Memo ry interface data [18].
PIO4_24 - 67 [2] PU I/O PIO4_24 — General-purpose digital input/output pin.
IENET_RXD1 — Ethernet receive data 1.
ISD_CARD_INT_N — Card interrupt line.
I/O FC7_RTS_SCL_SSEL1 — Flexcomm 7: USART request-to-send, I2C
clock, SPI slave select 1.
R — Reserved.
OCT1_MAT1Match output 1 from Timer 1.
I/O EMC_D[19] — External Memo ry interface data [19].
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 44 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO4_25 - 69 [2] PU I/O PIO4_25 — General-purpose digital input/output pin.
IENET_RXD2 — Ethernet Receive Data 2 (MII interface).
I/O SD_D[0] — SD/MMC data 0.
I/O FC7_CTS_SDA_SSEL0 — Flexcomm 7: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
R — Reserved.
OCT1_MAT2Match output 2 from Timer 1.
I/O EMC_D[20] — External Memo ry interface data [20].
PIO4_26 - 73 [2] PU I/O PIO4_26 — General-purpose digital input/output pin.
IENET_RXD3 — Ethernet Receive Data 3 (MII interface).
I/O SD_D[1] — SD/MMC data 1.
R — Reserved.
IUTICK_CAP2 — Micro-tick timer capture input 2.
OCT1_MAT3Match output 3 from Timer 1.
I/O EMC_D[21] — External Memo ry interface data [21].
PIO4_27 - 85 [2] PU I/O PIO4_27 — General-purpose digital input/output pin.
OENET_TX_EN — Ethernet transmit enable (RMII/MII interface).
I/O SD_D[2] — SD/MMC data 2.
R — Reserved.
I/O FC1_SCK — Flexcomm 1: USART or SPI clock.
ICT1_CAP0 — Capture input 0 to Timer 1.
I/O EMC_D[22] — External Memo ry interface data [22].
PIO4_28 - 92 [2] PU I/O PIO4_28 — General-purpose digital input/output pin.
OENET_TX_ER — Ethernet Transmit Error (MII interface).
I/O SD_D[3] — SD/MMC data 3.
R — Reserved.
I/O FC1_RXD_SDA_MOSIFlexcomm 1: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
ICT1_CAP1 — Capture 1 input to Timer 1.
I/O EMC_D[23] — External Memo ry interface data [23].
PIO4_29 - 102 [2] PU I/O PIO4_29 — General-purpose digital input/output pin.
IENET_RX_ER — Ethernet receive error (RMII/MII interface).
I/O SD_D[4] — SD/MMC data 4.
R — Reserved.
I/O FC1_TXD_SCL_MISO — Flexcomm 1: USART transmitter, I2C clock, SPI
master-in/slave-ou t data.
ICT1_CAP2 — Capture 2 input to Timer 1.
I/O EMC_D[24] — External Memo ry interface data [24].
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 45 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO4_30 - 80 [2] PU I/O PIO4_30 — General-purpose digital input/output pin.
IENET_TX_CLK — Ethernet Transmit Clock (MII interface).
I/O SD_D[5] — SD/MMC data 5.
OCT3_MAT0Match output 0 from Timer 3.
I/O FC1_RTS_SCL_SSEL1 — Flexcomm 1: USART request-to-send, I2C
clock, SPI slave select 1.
ICT1_CAP3 — Capture 3 input to Timer 1.
I/O EMC_D[25] — External Memo ry interface data [25].
PIO4_31 - 114 [2] PU I/O PIO4_31 — General-purpose digital input/output pin.
IENET_RX_CLK — Ethernet Receive Clock (MII interface) or Ethernet
Referenc e Cl o ck (RMII interface).
I/O SD_D[6] — SD/MMC data 6.
OCT3_MAT1Match output 1 from Timer 3.
I/O FC4_SCK — Flexcomm 4: USART or SPI clock.
R — Reserved.
I/O EMC_D[26] — External Memo ry interface data [26].
PIO5_0 - 122 [2] PU I/O PIO5_0 — General-purpose digital input/output pin.
IENET_RX_DV — Ethernet receive data valid.
I/O SD_D[7] — SD/MMC data 7.
OCT3_MAT2Match output 2 from Timer 3.
I/O FC4_RXD_SDA_MOSIFlexcomm 4: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
R — Reserved.
I/O EMC_D[27] — External Memo ry interface data [27].
PIO5_1 - 126 [2] PU I/O PIO5_1 — General-purpose digital input/output pin.
IENET_CRS — Ethernet Carrier Sense (MII interface) or Ethernet
Carrier Sense/Data Valid (RMII interface).
OSD_VOLT[0] — SD/MMC card regulator voltage control [0].
OCT3_MAT3Match output 3 from Timer 3.
I/O FC4_TXD_SCL_MISO — Flexcomm 4: USART transmitter, I2C clock, SPI
master-in/slave-out data.
R — Reserved.
I/O EMC_D[28] — External Memo ry interface data [28].
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 46 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO5_2 - 202 [2] PU I/O PIO5_2 — General-purpose digital input/output pin.
IENET_COL — Ethernet Collision detect (MII interface).
OSD_VOLT[1] — SD/MMC card regulator voltage control [1].
ICT3_CAP0 — Capture input 0 to Timer 3.
I/O FC4_CTS_SDA_SSEL0 — Flexcomm 4: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
R — Reserved.
I/O EMC_D[29] — External Memo ry interface data [29].
PIO5_3 - 129 [2] PU I/O PIO5_3 — General-purpose digital input/output pin.
OENET_MDC — Ethernet management data clock.
OSD_VOLT[2] — SD/MMC card regulator voltage control [2].
ICT3_CAP1 — Capture input 1 to Timer 3.
I/O FC4_RTS_SCL_SSEL1 — Flexcomm 4: USART request-to-send, I2C
clock, SPI slave select 1.
R — Reserved.
I/O EMC_D[30] — External Memo ry interface data [30].
PIO5_4 - 135 [2] PU I/O PIO5_4 — General-purpose digital input/output pin.
I/O ENET_MDIO — Ethernet management data I/O.
OSD_BACKEND_PWR — SD/MMC back-end power supply fo r embedded
device.
ICT3_CAP2 — Capture input 2 to Timer 3.
I/O FC4_SSEL2 — Flexcomm 4: SPI slave select 2.
R — Reserved.
I/O EMC_D[31] — External Memo ry interface data [31].
PIO5_5 - 145 [2] PU I/O PIO5_5 — General-purpose digital input/output pin.
ISCT0_GPI0 — Pin input 0 to SCTimer/PWM.
OPDM1_CLK — Clock for PDM interface 1, for digital microphone.
ICT3_CAP3 — Capture input 3 to Timer 3.
I/O FC4_SSEL3 — Flexcomm 4: SPI slave select 3.
OTRACECLK — Trace clock.
OEMC_A[21] — External memory interface address 21.
PIO5_6 - 152 [2] PU I/O PIO5_6 — General-purpose digital input/output pin.
ISCT0_GPI1 — Pin input 1 to SCTimer/PWM.
IPDM1_DATA — Data for PDM interface 1 (digital microphone).
I/O FC5_SCK — Flexcomm 5: USART or SPI clock.
OSCT0_OUT5 — SCTimer/PWM output 5.
OTRACEDATA[0] — Trace data bit 0.
OEMC_A[22] — External memory interface address 22.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 47 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
PIO5_7 - 171 [2] PU I/O PIO5_7 — General-purpose digital input/output pin.
ISCT0_GPI2 — Pin input 2 to SCTimer/PWM.
I/O MCLK — MCLK input or output for I2S and/or digital microphone.
I/O FC5_RXD_SDA_MOSI — Flexcomm 5: USART receiver, I2C data I/O, SPI
master-out/slave-in data.
OSCT0_OUT6 — SCTimer/PWM output 6.
OTRACEDATA[1] — Trace data bit 1.
OEMC_A[23] — External memory interface address 23.
PIO5_8 - 175 [2] PU I/O PIO5_8 — General-purpose digital input/output pin.
ISCT0_GPI3 — Pin input 3 to SCTimer/PWM.
OPDM0_CLK — Clock for PDM interface 0, for digital microphone.
I/O FC5_TXD_SCL_MISO — Flexcomm 5: USART transmitter, I2C clock, SPI
master-in/slave-out data.
OSCT0_OUT7 — SCTimer/PWM output 7.
OTRACEDATA[2] — Trace data bit 2.
OEMC_A[24] — External memory interface address 24.
PIO5_9 - 179 [2] PU I/O PIO5_9 — General-purpose digital input/output pin.
ISCT0_GPI4 — Pin input 4 to SCTimer/PWM.
IPDM0_DATA — Data for PDM interface 0 (digital microphone).
I/O FC5_CTS_SDA_SSEL0 — Flexcomm 5: USART clear-to-send, I2C data
I/O, SPI Slave Select 0.
OSCT0_OUT8 — SCTimer/PWM output 8.
OTRACEDATA[3] — Trace data bit 3.
OEMC_A[25] — External memory interface address 25.
PIO5_10 - 168 [2] PU I/O PIO5_10 — General-purpose digital input/output pin.
ISCT0_GPI5 — Pin input 5 to SCTimer/PWM.
R — Reserved.
I/O FC5_RTS_SCL_SSEL1 — Flexcomm 5: USART request-to-send, I2C
clock, SPI slave select 1.
OSCT0_OUT9 — SCTimer/PWM output 9.
IUTICK_CAP3 — Micro-tick timer capture input 3.
USB1_AVSSC F2 20 USB1 analog 3.3 V ground.
USB1_REXT F1 21 USB1 analog signal for reference resistor, 12.4 k +/-1%
USB1_ID G1 22 Indicates to the transceiver whether connected as an A-device (USB1_ID
LOW) or B-device (USB1_ID HIGH).
USB1_VBUS G2 23 [6] I/O VBUS pin (power on USB cable).
USB1_AVDDC3V3 G3 24 USB1 analog 3.3 V supply.
USB1_AVDDTX3V3 H1 25 USB1 analog 3.3 V supply for line drivers.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 48 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] PU = input mode, pull-up enabled (pull-up resistor pulls up pin to VDD). Z = high impedance; pull-up or pull-down disabled, AI = analog
input, I = input, O = output, F = floating. Reset state reflects the pin state at reset without boot code operation. For pin states in the
different power modes, see Section 6.2.2 “Pin states in different power modes. For termination on unused pins, see Section 6.2.1
Termination of unused pins.
[2] 5 V tolerant pad with programmable glitch filter (5 V tolerant if VDD present; if VDD not present, do not exceed 3.6 V); provides digital I/O
functions with TTL levels and hysteresis; normal drive strength. See Figure 41. Pulse width of spikes or glitches suppressed by input
filter is from 3 ns to 16 ns (simulated value).
[3] True open-drain pin. I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode
Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not
disturb the I2C lines. Open-drain configuration applies to all functions on this pin.
USB1_DP H3 27 [6] I/O USB1 bidirectional D+ line.
USB1_DM H2 26 [6] I/O USB1 bidirectional D- line.
USB1_AVSSTX3V3 J1 28 USB1 analog ground for line drivers.
USB0_DP E5 204 [6] I/O USB0 bidirectional D+ lin e.
USB0_DM D5 205 [6] I/O USB0 bidirectional D- line.
RESETN N13 101 [5] External reset input: A LOW on this pin resets the device, causing I/O ports
and peripherals to take on their default states, and the boot code to execute.
Wakes up th e part from deep power-down mode.
VDD E6;
E8;
F5;
G5;
J12;
L6;
L11
1;
48;
65;
104;
108;
156;
157;
206
- - Single 1.71 V to 3.6 V power supply powers internal digital functions and
I/Os.
VSS B3;
D7;
D8;
E11
;
H5;
J5;
K7
2;
49;
66;
103;
107;
148;
162;
201
- - Ground.
VDDA N6 64 - - Analog supply voltage.
VREFN N4 59 - - ADC nega tive reference voltage.
VREFP P6 63 - - ADC positive reference voltage.
VSSA L5 60 - - Analog ground.
XTALIN K4 41 [7] - - Main oscillator input.
XTALOUT J4 40 [7] - - Main oscillator output.
VBAT N11 94 - - Battery supply voltage. If no battery is used, tie VBAT to VDD or to ground.
RTCXIN L12 105 - - RTC oscillator input.
RTCXOUT K11 106 - - RTC oscillator outp ut.
Table 4. Pin de scription …continued
Symbol
180-pin, TFBGA
208-pin, LQFP
Reset state [1]
Type
Description
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 49 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[4] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog input. When
configured as an analog input, the digital section of the pin is disabled, and the pin is not 5 V tolerant.
[5] Reset pad.5 V tolerant pad with glitch filter with hysteresis. Pulse width of spikes or glitches suppressed by input filter is from 3 ns to
20 ns (simulated value)
[6] 5 V tolerant transparent analog pad.
[7] The oscillator input pin (XTALIN) cannot be driven by an external clock. Must connect a crystal between XTALIN and XTALOUT.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 50 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
6.2.1 Termination of unused pins
Table 5 shows how to terminate pins that are not used in the application. In many cases,
unused pins should be connected externally or configured correctly by software to
minimize the overall power consumption of the part.
Unused pins with GPIO function should be configured as outputs set to LOW with their
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the
GPIO function in the IOCON register, select output in th e GPIO DIR register, and write a 0
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.
In addition, it is recommended to configure all GPIO pins that are not bonde d ou t on
smaller packages as outputs driven LOW with their internal pull-up disabled.
[1] I = Input, IA = Inactive (no pull-up/pull-down enabled), PU = Pull-Up enabled, F = Floating
Table 5. Termination of unused pins
Pin Default
state[1] Recommended termination of unused pins
RESET I; PU The RESET pin can be left unconnected if the application does not use it.
all PIOn_m (not open-drain) I; PU Can be left unconnected if driven LOW and configured as GPIO output with pull-up
disabled by software.
PIOn_m (I2C open-drain) IA Can be left unconnected if driven LOW and configured as GPIO output by software.
RTCXIN - Connect to ground . When grounded, the RTC oscillator is disabled.
RTCXOUT - Can be left unconnected.
XTALIN - Connect to ground. When grounded, the RTC oscillator is disabled.
XTALOUT - Can be left unconnected.
VREFP - Tie to VDD.
VREFN - T ie to VSS.
VDDA - Tie to VDD.
VSSA - Tie to VSS.
VBAT - Tie to VDD.
USBn_DP F Can be left unconnected. If USB interface is not used, pin can be left unconnected
except in deep power-down mode where it must be externally pulled low. When the
USB PHY is disabled, the pins are floating.
USBn_DM F Can be left unconnected. If USB interface is not used, pin can be left unconnected
except in deep power-down mode where it must be externally pulled low. When the
USB PHY is disabled, the pins are floating.
USB1_AVSCC F Tie to VSS.
USB1_VBUS F Tie to VDD.
USB1_AVDDC3V3 F Tie to VDD.
USB1_AVDDTX3V3 F Tie to VDD.
USB1_AVSSTX3V3 F Tie to VSS.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 51 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
6.2.2 Pin states in different power modes
[1] Default and programmed pin states are retained in sleep and deep-sleep.
Table 6. Pin states in different power modes
Pin Active Sleep Deep-sleep Deep power-down
PIOn_m pins (not I2C) As configured in the IOCON[1]. Default: internal pull-up enabled. Floating
PIO0_13 to PIO0_14 (open-drain
I2C-bus pins) As configured in the IOCON[1]. Floating
PIO3_23 to PIO3_24 (open-drain
I2C-bus pins) As configured in the IOCON[1]. Floating
RESET Reset function enabled. Default: input, internal pull-up enabled .
Reset function disabled.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 52 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7. Functional description
7.1 Architectural overview
The ARM Cortex-M4 includes three AHB-Lite buses: the system bus, the I-code bus, and
the D-code bus. The I-code and D-code core buses allow for concurrent code and data
accesses from different slave ports.
The LPC546xx uses a multi-layer AHB matrix to connect the ARM Cortex-M4 buses and
other bus mast er s to pe rip her als in a fle xible ma nn e r tha t op tim ize s pe rform a nce by
allowing peripherals that are on different slave ports of the matrix to be accessed
simultaneously by different bus masters.
7.2 ARM Cortex-M4 processor
The ARM Cortex-M4 is a general purpose, 32-bit microprocessor, which offers high
performance and very low power consumption. The ARM Cortex-M4 offers many new
features, including a Thumb-2 instr uction set, low interrupt latency, hardware multiply and
divide, interruptable/continuable multiple load and store instructions, automatic state save
and restore for interrupts, tightly integrated interrupt controller with wake-up interrupt
controller, and multiple core buses capable of simultaneous accesses.
A 3-stage pipeline is employed so that all parts of the processing and memory systems
can operate continuously. Typically, while one instruction is b eing e xecuted, it s successo r
is being decoded, and a thir d instruction is being fetched from memory.
7.3 ARM Cortex-M4 integrated Floating Point Unit (FPU)
The FPU fully supports single-precision add, subtract, multiply, divide, multiply and
accumulate, and square root oper ations. It also provide s conversions between fixed- point
and floating-point data formats, and floating-point constant instructions.
The FPU provides floating-point computation functionality that is compliant with the
ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to
as the IEEE 754 stand ard.
7.4 Memory Protection Unit (MPU)
The Cortex-M4 includes a Memory Protection Unit (MPU) which can be used to improve
the reliability of an embedded system by protecting critical data within the user
application.
The MPU allows separating processing tasks by disallowing access to each other's data,
disabling access to memory r egio ns, allowing me mor y regi ons to be de fined as re ad -onl y
and detecting unexpected memory accesses that could potentially break the system.
The MPU separates the memory into distinct regions and implements protection by
preventing disallowed accesses. The MPU support s up to eight r egions each of which can
be divided into eight subregions. Accesses to memory locations that are not defined in the
MPU regions, or not permitted by the region setting, will cause the Memory Management
Fault exception to take place.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 53 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.5 Nested Vectored Interrupt Controller (NVIC) for Cortex-M4
The NVIC is an integral p art of the Cortex-M4. The tight co upling to the CPU allows for low
interrupt latency and efficient processing of late arriving interrupts.
7.5.1 Features
Controls system exceptions and peripheral interrupts.
Supports up to 54 vectored interrupts.
Eight programmable interrupt priority levels, with hardware priority level masking.
Relocatable vector table.
Non-Maskable Interrupt (NMI).
Software interrupt generation .
7.5.2 Interrupt sources
Each peripheral devi ce has one interrupt line conne cted to the NVIC but may have several
interrupt flags.
7.6 System Tick timer (SysTick)
The ARM Cortex-M4 includes a system tick timer (SysTick) that is intended to generate a
dedicated SYSTICK exception. The clock so urce for the SysTick can be the FRO or the
Cortex-M4 core clock.
7.7 On-chip static RAM
The LPC546xx support 200 kB SRAM with separate bus master access for higher
throughput and individual power control for low-power operation.
7.8 On-chip flash
The LPC546xx supports up to 512 kB of on-chip flash memory.
7.9 On-chip ROM
The 64 kB on-chip ROM contains the boot loader and the following Application
Programming Interfaces (API):
Flash In-Application Programming (IAP) and In-System Programming (ISP).
ROM-based USB drivers (HID, CDC, MSC, and DFU). Supports flash updates via
USB.
Supports booting from valid user code in flash, USART, SPI, and I2C.
Legacy, Single, and Dual image boot.
OTP API for programming OTP memory.
Random Numbe r Gene ra to r (RN G) API.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 54 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.10 EEPROM
The LPC546xx contains up to 16 kB byte of on-chip word-erasable and
word-programmable EEPROM data memory. EEPROM is not accessible in deep-sleep
and deep-power-down modes.
7.11 Memory mapping
The LPC546xx incorpor ates several distinct memory regions. The APB peripheral area is
512 kB in size and is divide d to allow fo r up to 32 pe rip herals.Ea ch p eri phera l is allo ca ted
4 kB of space simplifying the address decoding. The registers incorporated into the CPU,
such as NVIC, SysTick, and sleep mode co ntrol, are located on the pri vate peripheral b us.
The ARM Cortex-M4 processor has a single 4 GB address space. The following table
shows how this space is used on the LPC546xx.
Table 7. Memory u sage and details
Address range General Use Address range details and descriptio n
0x0000 0000 to 0x1FFF FFFF On-chip
non-volatile
memory
0x0000 0000 - 0x0007 FFFF Flash memory (512 kB).
Boot ROM 0x0300 0000 - 0x0300 FFFF Boot ROM with flash services in a 64 kB
space.
SRAMX 0x0400 0000 - 0x0400 7FFF I&D SRAM bank (32 kB).
SPI Flash
Interface (SPIFI) 0x1000 0000 - 0x17FF FFFF SPIFI memory mapped access space
(128 MB).
0x2000 0000 to 0x3FFF FFFF SRAM Banks 0x2000 0000 - 0x2002 7FFF SRAM banks (160 kB).
SRAM bit band
alias addressing 0x2200 0000 - 0x23FF FFFF SRAM bit band alias addressing (32
MB)
0x4000 0000 to 0x7FFF FFFF APB peripherals 0x4000 0000 - 0x4001 FFFF APB slave group 0 up to 32 peripheral
blocks of 4 kB each (128 kB).
0x4002 0000 - 0x4003 FFFF APB slave group 1 up to 32 peripheral
blocks of 4 kB each (128 kB).
0x4004 0000 - 0x4005 FFFF APB asynchronous slave group 2 up to
32 peripheral blocks of 4 kB each
(128 kB).
AHB peripherals 0x4008 0000 - 0x400B FFFF AHB peripherals (256 kB).
Peripheral bit
band alias
addressing
0x4200 0000 - 0x43FF FFFF Peripheral bit band alias addressing
(32 MB)
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 55 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Can be up to 256 MB, upper address 0x8FFF FFFF, if the address shift mode is enabled. See the
EMCSYSCTRL register bit 0 in the UM10912 LPC546xx user manual.
[2] Can be up to 128 MB, upper address 0x97FF FFFF, if the address shift mode is enabled. See the
EMCSYSCTRL register bit 0 in the UM10912 LPC546xx user manual.
Figure 6 shows the overall map of the entire address space from the user program
viewpoint following reset.
0x8000 0000 to 0xDFFF FFFF Off-chip Memory
via the External
Memory
Controller
Four static memory chip selects:
0x8000 0000 - 0x83FF FFFF Static memory chip select 0 (up to 64
MB)[1]
0x8800 0000 - 0x8BFF FFFF Static memory chip select 1 (up to 64
MB)[2]
0x9000 0000 – 0x93FF FFFF Static memory chip select 2 (up to 64
MB)
0x9800 0000 - 0x9BFF FFFF Static memory chip select 3 (up to 64
MB)
Four dynamic memory chip selects:
0xA000 0000 - 0xA7FF FFFF Dynamic memory chip select 0 (up to
256MB)
0xA800 0000 - 0xAFFF FFFF Dynamic memory chip select 1 (up to
256MB)
0xB000 0000 - 0xB7FF FFFF Dynamic memory chip select 2 (up to
256MB)
0xB800 0000 - 0xBFFF FFFF Dynamic memory chip select 3 (up to
256MB)
0xE000 0000 to 0xE00F FFFF Cortex-M4
Private
Periphe ral Bus
0xE000 0000 - 0xE00F FF FF Corte x-M4 related functions, includes
the NVIC and System T ic k Timer.
Table 7. Memory u sage and details …continued
Address range General Use Address range details and descriptio n
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 56 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
The private peripheral bus includes CPU peripherals such as the NVIC, SysTick, and the core control registers.
Fig 6. LPC546xx Memory mapping
aaa-026742
Memory space
(reserved)
(reserved)
(reserved)
(reserved)
(reserved)
(reserved)
(reserved)
(reserved)
Boot ROM
(reserved)
(reserved)
active interrupt vectors
(EMC)
private peripheral bus
peripheral
bit-band addressing
Asynchronous
APB peripherals
APB peripherals on
APB bridge 1
APB peripherals on
APB bridge 0
SRAM bit-band
addressing
SRAM2
(up to 32 kB)
SRAM1
(up to 64 kB)
SRAMX
(32 kB)
SRAM0
(up to 64 kB)
SPIFI Flash Interface
memory mapped space
Flash memory
(up to 512 kB)
AHB
peripheral
AHB peripherals
0x4009 B000
0x4009 A000
0x4009 9000
0x4009 8000
0x4009 7000
0x4009 6000
0x4009 5000
0x4009 4000
0x4009 2000
0x4009 1000
0x4009 0000
0x4008 C000
0x4008 B000
0x4008 A000
0x4008 9000
0x4008 8000
0x4008 7000
0x4008 6000
0x4008 5000
0x4008 4000
0x4008 3000
0x4008 2000
0x4008 1000
0x4008 0000
0x4009 C000
0x4009 D000
0x4009 E000
0x400A 0000
0x400A 1000
0x400A 2000
0x4010 BFFF
0x400A 3000
0x400A 4000
0x400A 5000
0x4010 0000
0x4010 2000
0x4010 8000
0x4004 0000 see APB
memory
map figure
0x4002 0000
0x0000 0000
0x0000 00C0
0x0000 0000
0x0008 0000
0x0300 0000
0x0300 0000
0x0400 0000
0x0401 0000
0x1000 0000
0x1800 0000
0x2000 0000
0x2001 0000
0x2002 0000
0x2002 0000
0x2200 0000
0x2400 0000
0x4000 0000
0x4006 0000
0x4008 0000
0x400C 0000
0x4200 0000
0x4400 0000
0x8000 0000
0xE000 0000
0xE010 0000
0xFFFF FFFF
FS USB host registers
(reserved)
USB SRAM (8 kB)
(reserved)
HS USB host registers
EPROM (16 kB)
(reserved)
ADC
ISP-AP interface
Flexcomm 8
Flexcomm 7
Flexcomm 6
Flexcomm 5
(reserved)
CAN 1
CAN 0
SDIO
Flexcomm 9
CRC engine
(reserved)
D-Mic interface
High Speed GPIO
(reserved)
Flexcomm 4
Flexcomm 3
Flexcomm 2
Flexcomm 1
Flexcomm 0
SC Timer / PWM
FS USB device registers
LCD registers
DMA registers
EMC registers
SPIFI registers
Ethernet
HS USB device
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 57 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.12 System control
7.12.1 Clock sources
The LPC546xx supports one external and two internal clock sources:
Free Running Oscillator (FRO).
Watchdog oscillator (WDOSC).
Crystal oscillator.
7.12.1.1 Free Running Oscillator (FRO)
The FRO 12 MHz oscillator provides the defa ult clock at rese t and pr ovides a clean
system clock shortly after the supply pins reach operating voltage.
12 MHz internal FRO oscillator, factory trimmed for accuracy, that can optionally be
used as a system clock as well as other purposes.
Selectable 48 MHz or 96 MHz FRO oscillator, factory trimmed for accuracy, that can
optionally be used as a system clock as well as other purposes.
7.12.1.2 Watchdog oscillator (WDOSC)
The watchdog oscillator is a low-power internal oscillator. The WDOSC can be used to
provide a clock to the WWDT and to the entire chip. The low-power watchdog oscillator
provides a selectable frequency in the range of 6 kHz to 1.5 MHz. The accuracy of this
clock is limited to 40% over temperature, voltage, and silicon processing variations.
Fig 7. LPC546xx APB Memory map
21
20
19-14
13
11-9
8
7-0
0x4003 6000
0x4003 5000
0x4003 4000
0x4002 D000
0x4002 C000
0x4002 9000
0x4002 8000
0x4002 0000
(reserved)
(reserved)
(reserved)
(reserved)
RIT
Flash controller
CTIMER2
APB bridge 1
19-15
14
13
12
11-10
9
8
0x4001 4000
0x4001 F000
0x4000 E000
0x4000 D000
0x4000 C000
0x4000 A000
0x4000 9000
0x4000 8000
0x4000 6000
0x4000 5000
0x4000 4000
0x4000 3000
0x4000 2000
0x4000 1000
0x4000 0000
(reserved)
MRT
(reserved)
CTIMER0
WDT
Micro-Tick
CTIMER1
APB bridge 0
7-6
5
4
3
2
1
Input muxes
GINT1
IOCON
Pin Interrupts (PINT)
(reserved)
GINT0
2Syscon
31-10
9
8
7-1
0
0x4005 FFFF
0x4004 A000
0x4004 9000
0x4004 8000
0x4004 1000
0x4004 0000
(reserved)
CTIMER3
Asynch. Syscon
(reserved)
CTIMER4
Asynchronous APB bridge
aaa-023944
EEPROM controller
OTP controller
(reserved)
20
0x4001 FFFF
0x4001 5000
21
31-22
Smart card 0
Smard card 1
22
23
0x4001 6000
(reserved)
0x4003 7000
0x4003 8000
0x4003 FFFF
25-24
RTC
0x4002 E000
12
26 RNG
31-27 (reserved)
0x4003 A000
0x4003 B000
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 58 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.12.1.3 Crystal oscillator
The LPC546xx include four independent oscillators. These are the main oscillator, the
FRO, the watchdog oscillator, and the RTC oscillator.
Following reset, the LPC546xx will operate from the Internal FRO until switched by
software. This allows systems to operate without any external crystal and the boot loader
code to operate at a known frequency. See Figure 8 and Figure 9 for an overview of the
LPC546xx clock generation.
7.12.2 System PLL (PLL0)
The system PLL accepts an input clock frequen cy in the range of 32.768 kHz to 25 MHz.
The input frequency is multiplied up to a high frequency with a Current Controlled
Oscillator (CCO).
The PLL can be enabled or disabled by software.
7.12.3 USB PLL (PLL1)
The USB PLL accepts an input clock frequency in the range of 1 MHz to 25 MHz. The
input frequency is multiplied up to a high frequency with a Current Controlled Oscillator
(CCO).
The PLL can be enabled or disabled by software.
7.12.4 Audio PLL (PLL2)
The audio PLL accepts an input clock frequency in the range of 1 MHz to 25 MHz. The
input frequency is multiplied up to a high frequency with a Current Controlled Oscillator
(CCO).
The PLL can be enabled or disabled by software.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 59 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.12.5 Clock Generation
Fig 8. LPC546xx clock generation
000
001
010
pll_clk
fro_hf
main_clk
usb_pll_clk
011
audio_pll_clk
ADC CLOCK
DIVIDER
ADCCLKDIV
CPU CLOCK
DIVIDER
to CPU, AHB bus,
Sync APB
AHBCLKDIV
ADC clock select
SYSTEM PLL
System PLL
settings 000
001
010
pll_clk
fro_hf
usb_pll_clk
111
“none”
USB0 CLOCK
DIVIDER
USB0CLKDIV
00
01
10
clk_in
fro_12m
(1)
(1)
wdt_clk
11
fro_hf
00
10
11
pll_clk
32k_clk
MAINCLKSELA[1:0]
(1)
(1): synchronized multiplexer,
see register descriptions for details.
ASYNCAPBCLKSELA[1:0]
MAINCLKSELB[1:0]
000
001
clk_in
fro_12m
011
32k_clk
111
“none”
SYSPLLCLKSEL[2:0]
000
001
010
fro_hf_div
fro_12
audio_pll_clk
011
mclk_in
111
“none”
DMIC CLOCK
DIVIDER
DMICCLKDIV
DMICCLKSEL[2:0]
USB0 clock select
MCLK
DIVIDER
MCLKDIV
MCLK clock select
000
001
AUDPLLCKSEL[2:0]
AUDIO PLL Settings
fro_12m
clk_in
Crystal
oscillator
Range select
SYSOSCCTRL[1:0]
clk_in
EMC ClOCK
DIVIDER
to EMC
(function
clock)
aaa-023922
00
01
fro_12m
main_clk
audio_pll_clk
fc6_fclk
to Async APB
000
001
fro_hf_div
audio_pll_clk
Audio PLL
USB PLL
USB PLL
settings
fro_hf_div
USB1 clock select
000
001
010
pll_clk
main_clk
usb_pll_clk
111
“none”
USB1 CLOCK
DIVIDER
to USB1 PHY
USB1CLKDIV
to ADC
to USB0
to DMIC
subsystem
to MCLK pin
(output)
111
“none”
111
“none”
USB1CLKSEL[2:0]
111
“none”
10
11
xtalin
xtalout
Main clock select A
PLL clock select
pll_clk
Main clock select B
EMCCLKDIV
FRO Clock
Divider
FROHFCLKDIV
fro_hf
clk_in usb_pll_clk
Audio clock select
audio_pll_clk
APB clock select B
ADCCLKSEL[2:0]
(FS USB)
USB0CLKSEL[2:0]
DMIC clock select
000
001
010
100
SDIO CLOCK
DIVIDER
SDIOCLKDIV
SDIO clock select
011
to SDIO
(function clock)
111
pll_clk
main_clk
usb_pll_clk
fro_hf
audio_pll_clk
“none”
SDIOCLKSEL[2:0]
MCLKCLKSEL[1:0]
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 60 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.12.6 Brownout detection
The LPC546xx includes a monitor for the voltage level on the VDD pin. If this voltage falls
below a fixed level, the BOD sets a flag that can be polled or cause an interrupt. In
addition, a separate threshold level can be selected to cause chip reset.
7.12.7 Safety
The LPC546xx includes a Windowed W atchDog T imer (WWDT), which can be enabled by
software af ter reset. Once enabled, the WWDT remains locked and canno t be modified in
any way until a reset occurs.
Fig 9. LPC546xx clock generati on (continued)
00
01
10
lcdclkin
main_clk
fro_hf
11
LCD CLOCK
DIVIDER
to LCD
(function clock)
LCDCLKDIV
LCDCLKSEL[1:0]
FRG CLOCK
DIVIDER
FRGCTRL[15:0]
aaa-023923
000
001
010
pll_clk
main_clk
fro_12m
011
fro_hf
111
“none”
FRG clock select
FRGCLKSEL[2:0]
000
001
010
fro_hf_div
fro_12m
audio_pll_clk
011
mclk_in
100
frg_clk
111
“none”
FCLKSEL[n]
fcn_fclk
(function clock
of Flexcomm[n])
CLKOUT
DIVIDER
CLKOUT
CLKOUTDIV
000
001
010
clk_in
main_clk
wdt_clk
011
fro_hf
100
pll_clk
101
usb_pll_clk
110
audio_pll_clk
111
32k_clk
CLKOUTSEL[2:0]
32k_clk to CLK32K of all Flexcomms
(1 per Flexcomm)
000
001
010
pll_clk
main_clk
011
fro_hf
111
audio_pll_clk
SCTimer/PWM
Clock Divider
to SCTimer/PWM
input clock 7
SCTCLKDIV
SCTCLKSEL[2:0]
“none”
“none”
(up to 10 Flexcomm
Interfaces on these
devices)
SCT clock select
LCD clock select
CLKOUT select
Systick clock
divider
to systick
function clock
SYSTICKCLKDIV
main_clk
to MCAN0
function clock
CAN0CLKDIV
main_clk MCAN0 clock
divider
to MCAN1
function clock
CAN1CLKDIV
main_clk MCAN1 clock
divider
to Smartcard0
function clock
SC0CLKDIV
main_clk Smartcard0
clock divider
to Smartcard1
function clock
SC1CLKDIV
main_clk Smartcard1
clock divider
to ARM Trace
function clock
ARMTRACECLKDIV
main_clk ARM Trace
clock divider
000
001
010
pll_clk
main_clk
usb_pll_clk
011
fro_hf
100
audio_pll_clk
SPIFI CLOCK
DIVIDER
to SPIFI
(function clock)
SPIFI CLKDIV
SPIFI clock select
SPIFICLKSEL[2:0]
111
“none”
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 61 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.13 Power control
The LPC5 46xx support a vari ety of po wer contr ol fe atures. In Active mo de, when the chip
is running, power and clocks to selected peripherals can be adjusted for power
consumption. In addition, there are three special mod es of processor power reduction with
diff erent peripherals running: sleep mode, deep-slee p mode, and deep power-down mo de
that can be activated using the power API library from the LPCOpen software package.
7.13.1 Sleep mode
In sleep mode, the system clock to the CPU is stopped and execution of instructions is
suspended until either a re set or an interrupt occurs. Peripheral functions, if se lected to be
clocked can continue operation during Sleep mode and may gener ate inte rr up ts to cause
the processor to resume execution. Sleep mode eliminates dynamic power used by the
processor itself, memory systems and related controllers, internal buses, and unused
peripherals. The processor state and registers, peripheral registers, and internal SRAM
values are main tained, and the log ic levels of the pins remain static.
7.13.2 Deep-sleep mode
In deep-sleep mode, the system clock to the processor is disabled as in sleep mode. All
analog blocks are powered down by default but can be selected to keep running through
the power API if needed as wake-up sources. The main clock and a ll peripheral clocks are
disabled. The FRO is disabled. The flash memory is put in standby mode.
Deep-sleep mode elimin ates all p ower used b y analo g periphe rals an d all d ynamic power
used by the processor itself, memory systems and related controllers, and internal buses.
The processor state and registers, peripheral registers, and internal SRAM values ar e
maintained, and the logic levels of the pins remain static.
GPIO Pin Interrupts, GPIO Group Interrupts, and selected peripherals such as USB0,
USB1, DMIC, SPI, I2C, USART, WWDT, RTC, Micro-tick Timer, and BOD can be left
running in deep sleep mode The FRO, RTC oscillator, and the watchdog oscillator can be
left running.In some cases, DMA can operate in deep-sleep mode. For more details, see
UM10912, LPC546xx user manual.
7.13.3 Deep power-down mode
In deep power-down mode, power is shut off to the entire chip except for the RTC power
domain and the RESET pin. The LPC546xx can wake up from deep power-down mode
via the RESET pin and the RTC alarm. The ALARM1HZ flag in RTC control register
generates an RTC wake-up interrupt request, which can wake up the part. During deep
power-down mode, the contents of the SRAM and registers are not retained. All functional
pins are tri-stated in deep power-down mode.
Table 8 shows the peripheral configuration in reduced power modes.
Table 8. Peripheral configuration in reduced power modes
Peripheral Reduced po wer mode
Sleep Deep-sleep Deep powe r-down
FRO Software configured Software configured Off
Flash Software configured Standby Off
BOD Software configured Software configured Off
PLL Software configured Off Off
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 62 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Watchdog osc and
WWDT Software configured Software configured Off
Micro-tick Timer Software configured Software configured Off
DMA Active Configurable some for operations. For more details,
see UM10912, LPC546xx user manual. Off
USART Software configured Off; but can create a wake-up interrupt in synchronous
slave mode or 32 kHz clock mode Off
SPI Software configured Off; but can create a wake-up interrupt in slave mode Off
I2C Sof tw a re co nfigured Off; but can cre ate a wake-up interru pt in slave mode Off
USB0 Software configured Software configured Off
USB1 Software configured Software configured Off
Ethernet Software configured Off Off
DMIC Software configured Software configured Off
Other digital peripherals Software configured Off Off
RTC oscillator Sof tware configured Software configured Software configured
Table 8. Peripheral configuration in reduced power modes
Peripheral Reduced po wer mode
Sleep Deep-sleep Deep powe r-down
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 63 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Table 9 shows wake-up sources for redu ced power modes.
Table 9. Wake-up sources for reduced power modes
Power mode Wa ke-up source Conditions
Sleep Any interrupt Enable interrupt in NVIC.
HWWAKE Certain Flexcomm Interface and DMIC subsystem activity.
Deep-sleep Pin interrupts Enable pin interrupts in NVIC and STARTER0 and/or STARTER1 registers.
BOD interrupt Enable interrupt in NVIC and STARTER0 registers.
Enable interrupt in BODCTRL register.
Configure the BOD to keep running in this mode with the power API.
BOD reset Enable reset in BODCTRL register.
Watchdog interrupt Enable the watchdog oscillator in the PDRUNCFG0 register.
Enable the watchdog interrupt in NVIC and STARTER0 registers.
Enable the watchdog in the WWDT MOD register and feed.
Enable interrupt in WWDT MOD register.
Configure the WDTOSC to keep running in this mode with the power API.
Watchdog reset Enable the watchdog oscillator in the PDRUNCFG0 register.
Enable the watchdog and watchdog reset in the WWDT MOD register and feed.
Reset pin Always availab l e.
RTC 1 H z al arm timer Enable the RTC 1 Hz oscillator in the RTCOSCCTRL register.
Enable the RTC bus clock in the AHBCLKCTRL0 register.
Start RTC alarm timer by writing a time-out value to the RTC COUNT register.
Enable the RTCALARM interr up t i n th e STARTER0 register.
RTC 1 kHz timer
time-out and alarm Enable the RTC 1 Hz oscillator and the RTC 1 kHz oscillator in the RTC CTRL
register.
Start RTC 1 kHz timer by writing a value to the WAKE register of the RTC.
Enable the RTC wake-up interrupt in the STARTER0 register.
Micro-tick timer
(intended for ultra-low
power wake-up from
deep-sleep mode
Enable the watchdog oscillator in the PDRUNCFG0 register.
Enable the Micro-tick timer clock by writing to the AHBCLKCTRL1 regi ster.
Start the Micro-tick timer by writing UTICK CTRL register.
Enable the Micro-tick timer interrupt in the STARTER0 register.
I2C interrupt Interrupt from I2C in slave mode.
SPI interrupt Interrupt from SPI in slave mode.
USART interrupt Interrupt from USART in slave or 32 kHz mode.
USB0 need clock
interrupt Interrupt from USB0 when activity is detected that requires a clock.
USB1 need clock
interrupt Interrupt from USB1 when activity is detected that requires a clock.
Ethernet interrupt Interrupt from ethernet.
DMA interrupt Interrupt from DMA.
HWWAKE Certain Flexcomm Interface and DMIC subsystem activity.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 64 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.14 General Purpose I/O (GPIO)
The LPC546xx provides six GPIO ports with a total of up to 171 GPIO pins.
Device pins that are not connected to a specific perip heral function are controlled by the
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate
registers allow setting or clea ring any number of output s simultan eously. The current level
of a port pin can be read back no matter what peripheral is selected for that pin.
7.14.1 Features
Accelerated GPIO functions:
GPIO registers are located on the AHB so that the fastest possible I/O timing can
be achieved.
Mask registers allow treating sets of port bits as a group, leaving other bits
unchanged.
All GPIO registers are byte and half-word addressable.
Entire port value can be written in one instruction.
Bit-level set and clear registers allow a single instruction set or clear of any number of
bits in one port.
Direction control of individual bits.
All I/O default to inputs after reset.
All GPIO pins can be selected to create an edge or level- sensitive GPIO interrupt
request.
One GPIO group interrupt can be triggered by a combinatio n of any pin or pins.
7.15 Pin interrupt/pattern engine
The pin interrupt block configures up to eight pins from all digital pins for providing eight
external interrupts connected to the NVIC. The pattern match engine can be used in
conjunction with sof tware to create complex state machines based on pin inputs. Any
digital pin , independent of the function selected through the switch matrix can be
configured through the SYSCON block as an input to the pin interrupt or pattern match
engine. The registers that control the pin interrupt or pattern match engine are located on
the I/O+ bus for fast single-cycle access.
Deep
power-down RTC 1 H z al arm timer Enable the RTC 1 Hz oscillator in the RTC CTRL register.
Start RTC alarm timer by writing a time-out value to the RTC COUNT register.
RTC 1 kHz timer
time-out and alarm Enable the RTC 1 Hz oscillator and the RTC 1 kHz oscillator in the RTCOSCC-
TRL register.
Enable the RTC bus clock in the AHBCLKCTRL0 register.
Start RTC 1 kHz timer by writing a value to the WAKE register of the RTC.
Reset pin Always availab l e.
Table 9. Wake-up sources for reduced power modes
Power mode Wa ke-up source Conditions
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 65 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.15.1 Features
Pin interrupts:
Up to eight pins can be selected from all GPIO pins on ports 0 and 1 as
edge-sensitive or level-sensitive interrupt requests. Each request creates a
separate interrupt in the NVIC.
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.
Level-sensitive interrupt pins can be HIGH-active or LOW-active.
Level-sensitive interrupt pins can be HIGH-active or LOW-active.
Pin interrupts can wake up the device from sleep mode and deep-sleep mode.
Pattern match engine:
Up to eight pins can be selected from all digital pins on ports 0 and 1 to contribute
to a boolean expression. The boolean expression consists of specified levels
and/or transitions on various combinations of these pins.
Each bit slice minterm (product te rm) comprising of the specified boolean
expression can generate its own, ded icated interrupt request.
Any occurrence of a pattern match can also be programmed to generate an RXEV
notification to the CPU. The RXEV signal can be connected to a pin.
Pattern match can be used in conjunction with software to create complex state
machines based on pin inputs.
Pattern match engine facilities wake-up only from active and sleep modes.
7.16 Serial peripherals
7.16.1 Full-speed USB Host/Device interface (USB0)
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a
host and one or more (up to 127) peripherals. The host controller allocates the USB
bandwidth to attached devices through a token-based protocol. The bus supports hot
plugging and dynamic configuration of the devices. All transactions are initiated by the
host controller.
7.16.1.1 USB0 device controller
The device controller enables 12 Mbit/s data exchange with a USB host controller. It
consists of a register interface, serial interface engine, end point buf fer memory. The serial
interface engine decodes the USB data str eam and writes data to the appropriate
endpoint buffer. The status of a completed USB transfer or error condition is indicated via
status registers. An interrupt is also generated if enabled.
Features
Supports 10 physical (5 logical) endpoints including two control endpoints.
Single and double-buffering supported.
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.
Support s wake-up from reduced power mode on USB activity and remo te wake-up.
Supports SoftConnect.
Link Power Management (LPM) supported.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 66 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.16.1.2 USB0 host controller
The host controller enables full- and low-speed dat a exchange with USB devices attached
to the bus. It consists of register in terface, serial interface engine and DMA controller . The
register inter fac e co mp lie s with th e Open H ost Controller Interface (OHCI) specification.
Features
OHCI compliant.
Two downstre am ports.
7.16.2 High-speed USB Host/Device interface (USB1)
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a
host and one or more (up to 127) peripherals. The host controller allocates the USB
bandwidth to attached devices through a token-based protocol. The bus supports hot
plugging and dynamic configuration of the devices. All transactions are initiated by the
host controller.
7.16.2.1 USB1 device controller
The device controller enables 480 Mbit/s data exchange with a USB host controller. It
consists of a register interface, serial interface engine, end point buf fer memory. The serial
interface engine decodes the USB data str eam and writes data to the appropriate
endpoint buffer. The status of a completed USB transfer or error condition is indicated via
status registers. An interrupt is also generated if enabled.
Features
Fully compliant with USB 2.0 Specification (high speed).
Supports 8 physical (16 logical) endpoints with up to 8 kB endpoint buffer RAM.
Supports Control, Bulk, Interrupt and Isochronous endpoints.
Scalable realization of endpoi nts at run time.
Endpoint Maximum pa cket size selection (up to USB maximum specification) by
software at run time.
While USB is in the Suspend mode, the LPC546xx can enter one of the reduced
power modes and wake up on USB activity.
Double buffer implementation for Bulk and Isochronous endpoints.
7.16.2.2 USB1 host controller
The host controller en ab le s hig h spe e d data exchan ge with USB de vice s at tached to the
bus. It consists of register interface and serial interface engine. The register interface
complies with the Enhanced Host Controller Inte r fac e (EHCI) specification.
Features
EHCI compliant.
Two downstre am ports.
Supports per-port power switching.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 67 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.16.3 Ethernet AVB
The Ethernet block enables a host to transmit and receive data over Ethernet in
compliance with the IEEE 802.3-2008 standard. The Ethernet interface contains a full
featured 10 Mbps or 100 Mbps Ethernet MAC (Media Access Controller) designed to
provide optimized performance through the use of DMA hardware acceleration.
7.16.3.1 Features
10/100 Mbit/s
DMA support
Power management remote wake-up frame and magic packet detection
Supports both full-duplex an d half- du ple x op er ation
Supports CSMA/CD Protocol for half-duplex operation.
Supports IEEE 802.3x flow control for full-duplex operatio n.
Optional forwarding of received pause control frames to the user application in
full-duplex operation.
Support s IEEE 802.1AS-2011 and 802.1-Qav-2009 for Audio Video (AV) traffic.
Software suppor t for A VB feature is available fr om NXP Professional Services. See
nxp.com for more details.
Back-press ur e supp or t for half -d up le x op er at ion .
Automatic transmission of zero-quanta p ause frame on deassertion of flow control
input in full-duplex operation.
Supports IEEE1588 time st amping and IEEE 1588 advanced time stamping (IEEE
1588-2008 v2).
7.16.4 SPI Flash Interface (SPIFI)
The SPI Flash Interface allows low-cost serial flash memories to be connected to the
LPC546xx microcontroller with little performance penalty compared to parallel flash
devices with higher pin count.
After a few commands configure the interface at startup, the entire flash content is
accessible as normal memory using byte, halfword, and word accesses by the processor
and/or DMA channels. Simple sequences of commands handle erasure and
programming.
Many serial flash d evices use a half-duplex command-dr iven SPI protocol for device setup
and initialization and then move to a half-duplex, command-driven 4-bit protocol for
normal operation. Different serial flash vendors and devices accept or require different
commands and command formats. SPIFI provides sufficient flexibility to be compatible
with common flash devices and includes extensions to help insure compatibility with future
devices.
7.16.4.1 Features
Interfaces to serial flash memory in the main memory map.
Supports classic and 4-bit bidir ec tio na l seria l proto co l s.
Half-duplex protocol compatible with various vendors and devices.
Quad SPI Flash Interface with 1-, 2-, or 4-bit data at rates of up to 52 MB per second.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 68 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Supports DMA access.
Provides XIP (execute in place) feature to execute code directly from serial flash.
7.16.5 CAN Flexible Data (CAN FD) interface
The LPC546xx contains two CAN FD interfaces, CAN FD 1 and CAN FD 2.
7.16.5.1 Features
Conforms with CAN protocol version 2.0 part A, B and ISO 11898-1.
CAN FD with up to 64 data bytes supported.
CAN Error Logging.
AUTOSAR support.
SAE J1939 support.
Improved acceptance filtering.
7.16.6 DMIC subsystem
7.16.6.1 Features
Pulse-Density Modulation (PDM) data input for left and/or right channels on 1 or 2
buses.
Flexible decimation.
16 entry FIFO for each channel.
DC blocking or unaltered DC bias can be selected.
Data can be transferred us ing DMA fro m dee p -slee p mo d e with ou t waking up the
CPU, then automatically returning to deep-sleep mode.
Data can be streamed direc tly to I2S on Flexcomm Interface 7.
7.16.7 Smart card interface
7.16.7.1 Features
Two DMA supported ISO 7816 Smart Card Interfaces.
Both asynchronous protocols, T = 0 and T = 1 are supported.
7.16.8 Flexcomm Interface serial communication
7.16.8.1 Features
USART with asynchronous ope ration or synchronous master or slave operation.
SPI master or slave, with up to 4 slave selects.
I2C, including separate master, slave, and monitor functions.
Two I2S functions using Flexcomm Interface 6 and Flexcomm Interface 7.
Data for USART, SPI, and I2S traffic uses the Flexcomm Interface FIFO. The I2C
function does not use the FI FO .
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 69 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.16.8.2 SPI serial I/O controller
Features
Maximum dat a rates o f 71 Mb it/s in maste r mod e and 14 Mb it/s in slave mode fo r SPI
functions.
Data fr ames of 1 to 16 bit s sup ported direct ly. Larger frames suppor ted by sof tware or
DMA set-up.
Master and slave operation.
Data can be transmitte d to a slave without the need to read incomi ng data. This can
be useful while setting up an SPI memory.
Control information can optionally be written along with data. This allows very
versatile operation, including “any length” frames.
Four Slave Select input/outputs with selectable polarity and flexible usage.
Activity on the SPI in slave mode allows wake-up from deep-sleep mode on any
enabled interr upt.
Remark: Texas Instruments SSI and National Microwire modes are not supported.
7.16.8.3 I2C-bus interface
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and
can operate as either a receiver-only device (for example, an LCD driver) or a transmitter
with the capability to both receive and send information (such as memory). Transmitters
and/or receivers can operate in either master or slave mode, depending on whether the
chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and
can be controlled by more than one bus master connected to it.
Features
All I2Cs support standard, Fast-mode, and Fast-mode Plus with data rates of up to
1Mbit/s.
All I2Cs support high-speed slave mode with data rates of up to 3.4 Mbit/s.
Independent Master, Slave, and Monitor functions.
Supports both Multi-mas te r and Mu lti- m ast er with Slav e fu nct ion s.
Multiple I2C slave addresses supported in hardware.
One slave address ca n be selectively qualified with a b it mask or an ad dress range in
order to respon d to multiple I2C-bus addresses.
10-bit addressing supported with software assist.
Supports SMBus.
Activity on the I2C in slave mo de allo ws wa ke- u p fro m deep- sle ep mode on any
enabled interr upt.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 70 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.16.8.4 USART
Features
Maximum bit rates of 6.25 Mbit/s in asynchron ous mode.
The maximum supported bit rate for USART master synchronous mode is 24 Mbit/s,
and the maximum supported bit rate for USART slave synchronous mode is
12.5 Mbit/s.
7, 8, or 9 data bits and 1 or 2 stop bits.
Synchronous mode with master or slave operation. Includes dat a phase selection and
continuous clock option.
Multiprocessor/multidrop (9-bit) mode with software address compare.
RS-485 transceiver output enable.
Autobaud mode for automatic baud rate detection
Parity generation and checkin g: odd, even, or none.
Software selectable oversampling from 5 to 16 clocks in asynchronous mode.
One transmit and one receive data buffer.
RTS/CTS for hardware signaling for automa tic flow control. Software flow control can
be performed using Delta CTS detect, Tran smit Disable control, and any GPIO as an
RTS output.
Received data and status can optiona lly be read from a single register
Break generation and detection.
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.
Built-in Baud Rate Generator with auto-baud function.
A fractional rate divider is shar ed among all USARTs.
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS
detect, and receiver sample noise detected.
Loopback mode for testing of data and flow control.
In synchronous slave mode, wakes up the part from deep-sleep mode.
Special operating mode allows operation at up to 9600 baud using the 32.768 kHz
RTC oscillator as the UART clock. This mode can be used while the device is in
deep-sleep mode and can wake-up the device when a character is received.
USART transmit and receive functions work with the system DMA controller.
7.16.8.5 I2S-bus interface
The I2S bus provides a standard communication interface for streaming data transfer
applications such as digital audio or data collection. The I2S bus specification defines a
3-wire serial bus, having one data, one clock, and one word select/frame trigger signal,
providing single or dual (mono or stereo) audio data transfer as well as other
configurations. In the LPC5 46xx, the I 2S function is included in F lexcomm Inter face 6 and
Flexcomm Interface 7. Ea ch of the Flexcomm Interface imp lement s four I 2S chann el pa irs.
The I2S interface within one Flexcomm Interface provides at least one channel pair that
can be configured as a master or a slave. Other channel pairs, if present, always operate
as slaves. All of the channel pairs within one Flexcomm Interface share one set of I2S
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 71 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
signals, and are configured toge ther for either transmit or receive operation, using the
same mode, same dat a configur ation and fr ame configuration . All such channel p airs can
participate in a time division multiplexing (TDM) arrangement. For cases requiring an
MCLK input and/or output, this is handled outside of the I2S block in the system level
clocking scheme.
Features
A Flexcomm Interface may im plement one or more I2S channel p airs, the first of which
could be a master o r a slave, and th e r est of which would be slaves. All chan ne l pairs
are configured together for either transmit or receive and other shared attributes. The
number of channel pairs is defined for each Flexcomm Interface, and may be from 0
to 4.
Configurable da ta size for all channels within one Flexcomm Interface, from 4 bits to
32 bits. Each channel pair can also be configured independently to act as a single
channel (mono as opposed to stereo operation).
All channel pairs within one Flexcomm Interface share a single bit clock (SCK) and
word select/frame trigger (WS), and data line (SDA).
Data for all I2S traffic within one Flexcomm Interface uses the Flexcomm Interface
FIFO. The FIFO depth is 8 entries.
Left justified and right justified data modes.
DMA support using FIFO level triggering.
TDM (Time Division Multiplexing) with a several stereo slots and/or mono slots is
supported. Each channel pair can act as any data slot. Multiple channel pairs can
participate as different slots on one TDM data line.
The bit clock and WS can be selectively inverted.
Sampling frequencies supported depends on the specific device configuration and
applications constraints (for example, system clock frequency and PLL availability.)
but generally supports standard audio data rates. See the data rates section in I2S
chapter in the LPC546xx user manual to calculate clock and sample rates.
Remark: The Flexcomm Interface function clock frequency should not be above 48 MHz.
7.17 Digital peripheral
7.17.1 LCD controller
The LCD controller provides all of the necessary control signals to interface directly to
various color and monochrome LCD panels. Both STN (single and dual panel) and TFT
panels can be oper ated. The disp lay resolutio n is se lect able a nd can be up to 1024 768
pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mo de.
An on-chip 512 byte color palette allows reducing bus utilization (that is, memory size of
the displayed data) while still supporting many colors.
The LCD interface includes its own DMA controller to allow it to operate independently of
the CPU and other sys te m fu nc tion s. A built-in FIF O acts as a buffer for display data,
providing flexibility for system timing. Hardware cursor support can further reduce the
amount of CPU time required to operate the display.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 72 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.17.1.1 Features
AHB master interface to access frame buffer.
Setup and control via a separate AHB slave interface.
Dual 16-deep program mable 64-bit wide FIFOs for buffering incoming display data.
Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays
with 4-bit or 8-bit interfaces.
Supports single and du al-panel color STN displays.
Supports Thin Film Transistor (TFT) color displays.
Programmable display resolution including, but not limited to: 320 200, 320 240,
640 200, 640 240, 640 480, 800 600, and 1024 768.
Hardware cursor support for single-panel displays.
15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support.
1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN.
1, 2, 4, or 8 bpp palettized color displays for color STN and TFT.
16 bpp true-color non-palettized for color STN and TFT.
24 bpp true-color non-palettized for color TFT.
Programmable timing for diff erent display panels.
256 entry, 16-bit palette RAM, arrang ed as a 12 8 32-bit RAM.
Frame, line, and pix el cloc k si gn als .
AC bias signal for STN, data enable signal for TFT panels.
Supports little and big-endian, and Windows CE data formats.
LCD panel clock may be generated from the peripheral clock, or from a clock input
pin.
7.17.2 SD/MMC card interface
The SD/MMC card interface supports the following modes to control:
7.17.2.1 Features
Secure Digital memory (SD version 1.1).
Secure Digital I/O (SDIO version 2.0).
Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1).
MultiMedia Cards (MMC version 4.1).
Supports up to a maximum of 50 MHz of interface frequency.
7.17.3 External memory controller
The LPC546xx EMC is an ARM PrimeCell MultiPort Memory Controller peripheral of fering
support for asynchronous static memory devices such as RAM, ROM, and flash. In
addition, it can be used as an interface with off-chip memory-mapped devices and
peripherals. The EMC is an Advanced Microcontroller Bus Architecture (AMBA) compliant
peripheral.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 73 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.17.3.1 Features
Read and write buffers to reduce latency and to improve performa nce.
Low transaction latency.
Asynchronous static memory device support including RAM, ROM, and flash, with or
without asynchronous page mode.
8/16/32 data and 16/20/26 address lines wide static memory support.
Static memory features include:
Asynchronous page mode read.
Programmable Wait States.
Bus turnaround delay.
Output enable and write enable delays.
Extended wait.
Dynamic memory interface supp ort including single data rate SDRAM.
16 bit and 32 bit wide chip select SDRAM memory support.
Four chip selects for synchronous memory and four chip selects for static memory
devices.
Power-saving modes dynamically control EMC_CKE and EMC_CLK outputs to
SDRAMs.
Dynamic memory self-refresh mode controlled by software.
Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row
address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB
parts, with 4, 8, 16, or 32 data bits per device.
Separate reset domains allow the for auto-refresh through a chip reset if desired.
Note: Synchronous static memory devices (synchronous burst mode) are not supported.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 74 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.17.4 DMA controller
The DMA controller allows peripheral-to memory, memory-to-peripheral, and
memory-to-memory transactions. Each DMA stream provides unidirectional DMA
transfers for a single source and destination .
7.17.4.1 Features
One channel per on-chip peripheral dire ction: typically one for input and o ne for output
for most peripherals.
DMA operations can optionally be triggered by on- or off-chip events.
Priority is user selectable for each channel.
Continuous priority arbitration.
Address cache.
Efficient use of data bus.
Supports single transfers up to 1,024 words.
Address increment options allow packing and/or unpacking data.
7.18 Counter/timers
7.18.1 General-purpose 32-bit timers/external event counter
The LPC546xx includes five general-purpose 32-bit timer/counters.
The timer/counter is designed to count cycles of the system derived clock or an
externally-supplied clock. It can optionally generate interrupts, generate timed DMA
requests, or perform other actions at specified timer values, based on four match
registers. Each timer/counter also includes two capture input s to trap the timer value when
an input signal transitio ns, optionally generating an inte rrupt.
7.18.1.1 Features
A 32-bit timer/counter with a progra mmable 32-bit prescaler.
Counter or time r op er a tion .
Up to four 32-bit captures can take a sn apshot of the timer value wh en an input sign al
transitions. A capture event ma y also optionally generate an inter rupt. The numbe r of
capture inputs for each timer that are actually available on device pins may vary by
device.
Four 32-bit matc h re gist er s tha t allo w:
Continuous operation with optional interrupt generation on match.
Stop timer on match with optional interrupt generatio n.
Reset timer on match with optional inter rupt generation.
Shadow registers are added for glitch-free PWM output.
For each timer, up to four external outputs corresponding to match registers with the
following capabilities (the number of match outputs for each timer that are actually
available on dev ice pin s may va ry by de vice):
Set LOW on match.
Set HIGH on match.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 75 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Toggle on match.
Do nothing on match.
Up to two match registers can be used to generate timed DMA requests.
The timer and prescaler may be configured to be cleared on a designated capture
event. This feature permits easy pulse width measurement by clearing the timer on
the leading edge of an input pulse and capturing the timer value on the trailing edge.
Up to four match regi ster s can b e con figur ed for PWM o per ation , allowing up to thr ee
single edged controlled PWM outputs. (The number of match outputs for each timer
that are actually available on device pins may vary by device .)
7.18.2 SCTimer/PWM
The SCT imer/PWM allows a wide variety of timi ng, counting, output modulation, an d input
capture operations. The inputs and outputs of the SCTimer/PWM are shared with the
capture and mat ch inp u ts/outpu ts of the 32-b it ge ne r al- pu rp o se co un te r/ tim er s.
The SCT imer/PWM can be co nfigured as two 16-bit counters or a unified 32 -bit counter . In
the two-counter case, in addition to the counter value the following operational elements
are independent for each half:
State variable.
Limit, halt, stop, and start conditions.
Values of Match/Capture registers, plus reload or capture control values.
In the two-counter case, the following operational elements are global to the
SCTimer/PWM, but the last three can use matc h conditions from either counter:
Clock selection
Inputs
Events
Outputs
Interrupts
7.18.2.1 Features
Two 16-bit counters or one 32-bit counter.
Counter(s) clocked by bus clock or selected input.
Up counter(s) or up-down counter (s).
State variable allows sequencing across multiple counter cycles.
Event combines input or output condition and/or counter match in a specified state.
Events control outputs, interrupts, and the SCTimer/PWM states.
Match register 0 can be used as an automatic limit.
In bi-directional mode, events can be enabled based on the count direction.
Match events can be held until an ot he r qu a lifyin g ev en t occurs.
Selected event(s) can limit, halt, start, or stop a counter.
Supports:
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 76 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
8 inputs
10 outputs
16 match/capture registers
16 events
16 states
PWM capabilities including dead time and emergency abort functions
7.18.3 Windowed WatchDog Timer (WWDT)
The purpose of the watchdog is to reset the controller if software fails to periodically
service it within a programmable time window.
7.18.3.1 Features
Internally resets chip if not periodically reloaded during the programmable time-out
period.
Optional windowed operation re quires reload to occur between a minimum and
maximum time period, both programmable.
Optional warning interrupt can be generated at a programmable time prior to
watchdog time-out.
Enabled by soft ware but requires a hardwar e reset or a watchdog reset/interrupt to be
disabled.
Incorrect feed sequence causes reset or interrupt if enabled.
Flag to indicate watchdog reset.
Programmable 24-bit tim er with internal prescaler.
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in
multiples of Tcy(WDCLK) 4.
The Watchdog Clock (WDCLK) uses the WDOSC as the clock source.
7.18.4 Real Time Clo ck (RTC) timer
The R TC timer is a 32-bit timer which counts down from a preset value to zero. At zero,
the preset value is reloaded and the counter continues. The RTC timer uses the 32.768
kHz clock input to create a 1 Hz or 1 kHz clock.
7.18.5 Multi-Rate Timer (MRT)
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each
channel can be programmed with an independent time interval, and each channel
operates independently from the other channels.
7.18.5.1 Features
24-bit interrupt timer.
Four channels independently counting down from individually set values.
Repeat and one-shot interrupt modes.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 77 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.18.6 Repetitive Interrupt Timer (RIT)
The repetitive interrupt timer provides a free-running 48-bit counter which is compared to
a selectable value, gen erating an interrupt when a match occurs. Any bits of the
timer/compare can be masked such that they do not contribute to the match detection.
The repetitive interrupt timer can be used to create an interrupt that repeats at
predetermined intervals.
7.18.6.1 Features
48-bit counter ru nn in g fro m the main cloc k. Counter can be free-running or can be
reset when an RIT interrupt is generated.
48-bit compare value.
48-bit compare mask. An inter rupt is generated when the counter value equals the
compare value, after masking. This allows for combinations not possible with a simple
compare.
Can be used for ETM debug time stamping.
7.19 12-bit Analog-to-Digital Converter (ADC)
The ADC support s a resolution of 12-bit and fast conversion rates of up to 5 Msamples/s.
Sequences of analog-to-digit al conversions can be triggere d by multiple sources. Possible
trigger sources are the SCTimer/PWM, external pins, and the ARM TXEV interrupt.
The ADC supports a variable clocking scheme with clocking synchronous to the system
clock or independent, asynchronous clocking for high-speed conversions
The ADC includes a hardware threshold compare function with zero-crossing detection.
The threshold crossing interrupt is connected internally to the SCTimer/PWM inputs for
tight timing contr o l be tw ee n th e ADC an d th e SCTimer/PWM.
7.19.1 Features
12-bit successive approximation analog to digital converter.
Input multiplexing among up to 12 pins.
Two configurable conversion sequences with independent triggers.
Optional auto matic high/low thres ho ld co mpariso n an d “z er o cro ssing” detectio n .
Measurement ra nge VREF N to VREFP (ty pic ally 3 V; not to exceed VDDA voltage
level).
12-bit conversion rate of 5.0 Msamples/s. Options for reduced resolution at higher
conversion rates.
Burst conversion mode for single or multiple inputs.
Synchronous or asynchronous oper ation. Asynchronous oper ation maximizes
flexibility in choosing the ADC clock frequency, Synchronous mode minimizes trigger
latency and can eliminate uncer tainty and jitter in response to a trigger.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 78 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.20 CRC engine
The Cyclic Redundancy Check (CRC) generator with programmable polynomial settings
supports several CRC standards commonly used. To save system power and bus
bandwidth, the CRC engine supports DMA transfers.
7.20.1 Features
Supports three common polynomials CRC-CCITT, CRC-16, and CRC-32.
CRC-CCITT: x16 + x12 + x5 + 1
CRC-16: x16 + x15 + x2 + 1
CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
Bit order reverse and 1’s complement programmable setting for input data and CRC
sum.
Programmable seed number setting.
Supports CPU PIO or DMA back-to-ba ck tra nsfe r.
Accept any size of data width per write: 8, 16 or 32-bit.
8-bit write: 1-cycle operation.
16-bit write: 2-cycle operation (8-bit x 2-cycle).
32-bit write: 4-cycle operation (8-bit x 4-cycle).
7.21 Temperature sensor
The temperature sensor transducer uses an intrinsic pn-junction diode reference and
outputs a CTAT voltage (Complement To Absolute Temperature). The output voltage
varies inversely with device temperature with an absolute accuracy of better than ±5 C
over the full temperature range (40 C to +105 C). The temperature sensor is only
approximately linear with a slight curvature. The output voltage is measured over different
ranges of temperatures and fit with linear-least-square lines.
After power- up, the tempe rature sensor output must be a llowed to settle to its st able value
before it can be used as an accurate ADC input.
For an accurate measurement of the temperature sensor by the ADC, the ADC must be
configured in single-channel burst mode. The last value of a nine-conversion (or more)
burst provides an accurate result.
7.22 Security features
The OTP memory cont ains a memory ba nk of 128 bit s each. OT P bank cont ains 4 words:
word 0 for ECRP, word 1 is reser ve d, words 2 an d 3 ca n be use d by us er app lica tio n for
storing application specific options.
7.22.1 Features
OTP memory.
Random number generator (RNG).
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 79 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.23 Code security (enhanced Code Read Protection - eCRP)
eCRP is a mechanism that allows the user to enable different features in the security
system. The features are specified using a combination of OTP and flash values. Some
levels are only controlled by either flash or OTP, but the majority have dual control. The
overlap allows higher security by specifying access using OTP bits, which cannot be
changed (except to increase security) while allowing customers who are less concerned
about security the ability to change levels in the flash image.
eCRP is calculated by reading the ECRP from the flash boot sector (offset 0x0000 0020)
and then masking it with the value read from OTP. The OTP bits are more re strictive (that
is, disable access) than equivalent values in flash. Certain aspects of eCRP are only
specified in the OTP (that is, Mass Erase disable), while others are only specified in flash
(that is, Sector Protection count).
For Dual Enhanced images, eCRP is calculated by reading th e eCRP from th e bootable
image sector . The bootable image is defined as the highest revision image that passes the
required validation methods.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 80 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
7.24 Emulation and debugging
Debug and trace functions are integrated into the ARM Cortex-M4. Serial wire debug and
trace functions are supported. The ARM Cortex-M 4 is configured to support up to eight
breakpoints and four watch points.
The ARM SYSREQ reset is supported and causes the processor to reset the peripherals,
execute the boot code, restart from address 0x0000 0000, and break at the user entry
point.
The SWD pins are multiplexed with other digital I/O pins. On reset, the pins assume the
SWD functions by default.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 81 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
8. Limiting values
Table 10. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]
Symbol Parameter Conditions Min Max Unit
VDD supply voltage (core and
external rail) on pin VDD [2] -0.5 +4.6 V
VDDA analog supply voltage on pin VDDA -0.5 +4.6 V
VBAT battery supply voltage on pin VBAT -0.5 +4.6 V
Vref reference voltage on pin VREFP - -0.5 +4.6 V
VIinput voltage only valid when the VDD > 1.8 V;
5 V tolerant I/O pins
[6][7] -0.5 +5.0 V
on I2C open-drain pins [5] -0.5 +5.0 V
USB_DM,
USB_DP pins -0.5 +5.0 V
VIA analog input voltage on digital pins configured for an
analog function [8][9] -0.5 VDD V
IDD supply current per supply pin,
1.71 V VDD < 2.7 V
[3] -200mA
supply current per supply pin,
2.7 V VDD < 3.6 V
[3] -300mA
ISS ground current per ground pin,
1.71 V VDD < 2.7 V
[3] -200mA
ground current per ground pin,
2.7 V VDD < 3.6 V
[3] -300mA
Ilatch I/O latch-up current (0.5VDD) < VI < (1.5VDD);
Tj < 125 C-100mA
Tstg storage temperature [10] -65 +150 C
Tj(max) maximum junction
temperature -+150C
Ptot(pack) total power dissipation
(per package) LQFP208, based on package heat
transfer, not device power
consumption
[11] -1.2W
LQFP208, based on package heat
transfer, not device power
consumption
[12] -0.95W
TFBGA180, based on package
heat transfer, not device power
consumption
[11] -0.95W
TFBGA180, based on package
heat transfer, not device power
consumption
[13] -1.2W
VESD electrostatic discharge
voltage human body model; all pins [4] - 2000 V
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 82 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] The following applies to the limiting values:
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated
maximum.
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless
otherwise noted.
c) The limiting values are stress ratings only and operating the part at these values is not recommended and proper operation is not
guaranteed. The conditions for functional operation are specified in Table 21.
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 21) and below ground that can be applied for a short time
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.
[3] The peak current is limited to 25 times the corresponding maximum current.
[4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
[5] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.
[6] Applies to all 5 V tolerant I/O pins except true open-drain pins.
[7] Including the voltage on outputs in 3-state mode.
[8] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.
[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.
[10] Dependent on package type.
[11] JEDEC (4.5 in 4 in); still air.
[12] Single layer (4.5 in 3 in); still air.
[13] 8-layer (4.5 in 3 in); still air.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 83 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
9. Thermal characteristics
The average chip junction temperature, Tj (C), can be calculated using the following
equation:
(1)
Tamb = ambient temperature (C),
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)
PD = sum of internal and I/O power dissipation
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of
the I/O pins is of ten small and ma ny times can b e negligible. However it can be significant
in some applications.
Table 11. Thermal resistance
Symbol Parameter Conditions Max/Min Unit
LQFP208 Package
Rth(j-a) thermal resistance from
junction to ambient JEDEC (4.5 in 4 in); still air 33 15 % C/W
Single-layer (4.5 in 3 in); still air 41 15 % C/W
Rth(j-c) thermal resistance from
junction to case 16 15 % C/W
TFBGA180 Package
Rth(j-a) thermal resistance from
junction to ambient JEDEC (4.5 in 4 in); still air 41 15 % C/W
8-layer (4.5 in 3 in); still air 33 15 % C/W
Rth(j-c) thermal resistance from
junction to case 14 15 % C/W
TjTamb PDRth j a
+=
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 84 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
10. Static characteristics
10.1 General operating conditions
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.
[2] Attempting to program below 2.7 V will result in unpredictable results and the part might enter an unrecoverable state.
10.2 Power-up ramp conditions
[1] Assert the external reset pin until VDD is > 1.62 V if the power-up characteristic specification cannot be
implemented.
[2] VDD to stay above V1 for the entire duration twd.
[3] VDD to stay below V2 for the minimum duration of twd.
Table 12. General operating conditions
Tamb =
40
C to +105
C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
fclk CPU clock frequency - - 180 MHz
CPU clock frequency For USB high-speed device and
host operations 60 - 180 MHz
CPU clock frequency For USB full-speed device and host
operations 12 - 180 MHz
VDD supply voltage (core
and external rail) 1.71 - 3.6 V
For OTP programming only [2] 2.7 - 3.6 V
For USB operation only 3.0 - 3.6 V
VDDA analog supply voltage 1.71 - 3.6 V
VBAT battery supply voltage 1.71 - 3.6 V
Vrefp ADC positive reference
voltage VDDA 2 V 2.0 - VDDA V
VDDA < 2 V VDDA -V
DDA V
Tamb Temperature For EEPROM operation 40.0 - +85 C
RTC oscillator pins
Vi(rtcx) 32.768 kHz oscillator
input voltage on pin RTCXIN -0.5 - +3.6 V
Vo(rtcx) 32.768 kHz oscillator
output voltage on pin RTCXOUT -0.5 - +3.6 V
Vi(xtal) crystal input voltage on pin XTALIN 0.5 - 1.95 V
Vo(xtal) crystal output voltage on pin XTALOUT 0.5 - 1.95 V
Table 13. Power-up characteristics[1]
Tamb =40 C to +105 C.
Symbol Parameter Min Typ Max Unit
twd Window duration
(time where
V1<VDD<V2)
--170 s
V1Window low voltage [2] 1.4 - - V
V2Window high voltage [3] - - 1.62 V
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 85 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
10.3 CoreMark data
[1] Clock source FRO. PLL disabled.
[2] Clock source 12 MHz F RO. PLL enabled.
[3] Characterized through bench measurements using typical samples.
[4] Compiler settings: Keil µVision v.5.21, optimization level 3, optimized for time on.
[5] See the FLASHCFG register in the LPC546xx User Manual for system clock flash access time settings. Acceleration enable bit in the
FLASHCFG register is set to 1.
[6] Flash is powered down
[7] SRAM1, SRAM2, SRAM3, and USB SRAM powered down. SRAM0 and SRAMX powered.
t1: The time when there is no restriction on the ramp rate.
Fig 10. Power-up ramp
VDD
V2
0
twd
t1
V1
aaa-025788
Table 14. CoreMark score
Tamb =25
C, VDD = 3.3V
Parameter Conditions Typ Unit
ARM Cortex-M4 in active mode
CoreMark score CoreMark code executed from SRAMX;
CCLK = 12 MHz [1][3][4][6][7] 2.62 (Iterations/s) / MHz
CCLK = 96 MHz [1][3][4][6][7] 2.62 (Iterations/s) / MHz
CCLK = 180 MHz [2][3][4][6][7] 2.62 (Iterations/s) / MHz
CoreMark score CoreMark code executed from flash;
CCLK = 12 MHz; 1 system clock flash
access time. [1][3][4][5][7] 2.61 (Iterations/s) / MHz
CCLK = 96 MHz; 5 system clock flash
access time. [1][3][4][5][7] 2.18 (Iterations/s) / MHz
CCLK = 180 MHz; 9 system clock flash
access time. [2][3][4][5][7] 1.98 (Iterations/s) / MHz
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 86 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled; See
the FLASHCFG register in the LPC546xx User Manual for system clock flash access time settings.
Acceleration enable bit in the FLASHCFG register is set to 1. Measured with Keil uVision v.5.21.
Optimization level 3, optimized for time ON.
12 MHz, 24 MHz, 48 MHz, and 96 MHz: FRO enabled; PLL disabled.
36 MHz, 60 MHz, 72 MHz, 84 MHz, 108 MHz, 120 MHz, 132 MHz, 144 MHz, 156 MHz, 168 MHz,
and 180 MHz: FRO enabled; PLL enabled.
CoreMark score from flash: SRAM1, SRAM2, SRAM3, and USB SRAM powered down. SRAM0
and SRAMX powered.
CoreMark score from SRAMX: SRAM0 is powered; flash is powered down.
Fig 11. Typical CoreMark score ((iterations/ s)/MHz) vs. Frequency (MHz) from flash and
SRAMX
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 87 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
10.4 Power consumption
Power measurements in Active, sleep, and deep-sleep modes were performed under the
following conditions:
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.
Configure GPIO pins as outputs using the GPIO DIR register.
Write 1 to the GPIO CLR register to drive the outputs LOW.
All peripherals disabled.
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), 3.3V.
[2] Clock source FRO. PLL disabled.
[3] Characterized through bench measurements using typical samples.
[4] Compiler settings: Keil uVision v.5.21, optimization level 0, optimized for time off.
[5] Acceleration enable bit in the FLASHCFG register is set to 0. SRAM0 powered. SRAM1, SRAM2, SRAM3, USB SRAM and SRAMX
powered down.
[6] Flash is powered down; SRAM0 and SRAMX are powered; SRAM1, SRAM2, SRAM3, and USB SRAM are powered down. All
peripheral clocks disabled.
[7] Clock source FRO. PLL enabled.
Table 15 . Static characteristics: Power consumption in active and sleep mode
Tamb =
40
C to +105
C, unless otherwise specified.1.71 V
VDD
3.6 V.
Symbol Parameter Conditions Min Typ[1] Max Unit
Active mode
IDD supply current CoreMark code executed from
SRAMX; flash powered down
CCLK = 12 MHz [2][3][4][6] -3.3-mA
CCLK = 96 MHz [2][3][4][6] -11-mA
CCLK = 180 MHz [3][4][6][7] -24-mA
IDD supply current CoreMark code executed from flash;
CCLK = 12 MHz; 1 system clock
flash access time . [2][3][4][5] -4-mA
CCLK = 96 MHz; 5 system clock
flash access time . [2][3][4][5] -9.4-mA
CCLK = 180 MHz; 9 system clock
flash access time . [3][4][5][7] -18-mA
Sleep mode
IDD supply current CCLK = 12 MHz [2][3][4][6] -1.7-mA
CCLK = 96 MHz [2][3][4][6] -4.1-mA
CCLK = 180 MHz [3][4][7] -8.3-mA
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 88 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), VDD = 1.8 V.
[2] Characterized through bench measurements using typical samples.
[3] Guaranteed by characterization, not tested in production. VDD = 2.7 V.
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled;
Acceleration enable bit in the FLASHCFG register is set to 0. See the FLASHCFG register in the
LPC546xx User Manual for system clock flash access time settings. Measured with Keil uVision
v.5.21. Optimization level 0, optimized for time off.
12 MHz, 24 MHz, 48 MHz, and 96 MHz: FRO enabled; PLL disabled.
36 MHz, 60 MHz, 72 MHz, 84 MHz, 108 MHz, 120 MHz, 132 MHz, 144 MHz, 156 MHz, 168 MHz,
and 180 MHz: FRO enabled; PLL enabled.
CoreMark A/MHz from flash: SRAM1, SRAM2, SRAM3, and USB SRAM powered down. SRAM0
and SRAMX powered.
CoreMark A/MHz from SRAMX: SRAM0 is powered; flash is powered down.
Fig 12. CoreMark po we r c ons u mption: typical A/MHz vs. frequency (MHz) from flash
and SRAMX
Table 16 . Static characteristics: Power co nsumption in deep-sleep and deep power-down modes
Tamb =
40
C to +105
C, unless otherwise specified, 1.71 V
VDD
2.7 V.
Symbol Parameter Conditions Min Typ[1][2] Max[3] Unit
IDD supply current Deep-sleep mode; Flash is powered down
SRAMX (32 KB) powered
Tamb =25 C-22 64 A
SRAMX (32 KB) powered
Tamb = 105 C-- 800A
Deep power-down mode
RTC oscillator input grounded (RTC oscillator
disabled)
Tamb =25 C
- 326 1000 nA
RTC oscillator input grounded (RTC oscillator
disabled)
Tamb =105C
-- 27 A
RTC oscillator running with external crystal
VDD = VDDA = VREFP = VBAT = 1.8 V - 340 - nA
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 89 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), VDD = 3.3 V.
[2] Characterized through bench measurements using typical samples.
[3] Tested in production, VDD = 3.6 V.
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C).
[2] Characterized through bench measurements using typical samples.
Table 17 . Static characteristics: Power co nsumption in deep-sleep and deep power-down modes
Tamb =
40
C to +105
C, unless otherwise specified, 2.7 V
VDD
3.6 V.
Symbol Parameter Conditions Min Typ[1][2] Max[3] Unit
IDD supply current Deep-sleep mode; Flash is powered down
SRAMX (32 KB) powered
Tamb =25 C-23 68 A
SRAMX (32 KB) powered
Tamb = 105 C-- 1150A
Deep power-down mode
RTC oscillator input grounded (RTC oscillator
disabled)
Tamb =25 C
- 464 1500 nA
RTC oscillator input grounded (RTC oscillator
disabled)
Tamb =105C
-- 42 A
RTC oscillator running with external crystal
VDD = VDDA= VREFP = 3.3 V, VBAT = 3.0 V - 550 - nA
Table 18 . Static characteristics: Power co nsumption in deep power-down mo de
Tamb =
40
C to +105
C, unless otherwise specified, 2.7 V
VDD
3.6 V.
Symbol Parameter Conditions Min Typ[1][2] Max Unit
IBAT battery supply
current Deep power-down mode;
RTC oscillator running with external crystal
VDD = VDDA= VREFP = 3.3 V, VBAT = 3.0 V - 0 - nA
VDD = VDDA= VREFP = 0 V or tied to ground, VBAT =
3.0 V - 340 - nA
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 90 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Table 19 shows the typical peripheral power consumption measured on a typical sample
at Tamb = 25 °C and VDD = 3.3 V. The supply current per peripheral is measured as the
diff erence in supply current between the peripheral block en abled and the periph eral block
disabled using ASYNCAPBCLKCTRL, AHBCLKCTRL0/1/2, and PDRUNCFG0/1
registers. All other blocks are disabled an d no code accessing th e peripher al is executed.
The supply current s are sho w n for system clock frequ encie s of 12 MHz, 4 8 MHz, 96 MHz
and 180MHz.
Conditions: BOD disabled; all oscillators and analog blocks disabled; all SRAM disabled except
32 KB SRAMX.
Fig 13. Deep-slee p mode: Typical supply current IDD versus temperature for different
supply vo ltages VDD
RTC disabled (RTC oscillator input grounded).
Fig 14. Deep power-down mode: Typical supply current IDD ve rsus temperature for
different supply voltages VDD
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 91 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] The supply current per peripheral is measured as the difference in supply current between the peripheral
block enabled and the peripheral block disabled using PDRUNCFG0/1 registers. All other blocks are
disabled and no code accessing the peripheral is executed.
[2] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.
Table 19. Typical periphera l po wer consumption[1][2]
VDD = 3.3 V; Tamb = 25 °C
Peripheral IDD in uA
FRO 100
WDT OSC 2.0
Flash 200
BOD 2.0
Table 20 . Typical AHB/APB peripheral power consumption [3][4][5]
Tamb = 25 °C, VDD = 3.3 V;
Peripheral IDD in uA/MHz IDD in uA/MHz IDD in uA/MHz IDD in uA /MHz
AHB periphera l CPU: 12 MHz, sync
APB bus: 12 MH z CPU: 48 MHz, sync
APB bus: 48 MHz CPU: 96 MHz, sync
APB bus: 96 MHz CPU: 180 MHz, sync
APB bus: 180 MHz
USB0 device 0.3 0.3 0.3 0.4
USB1 device 4.4 4.4 4.4 5.0
DMIC 0.2 0.2 0.2 0.2
GPIO0 [1] 0.9 0.9 0.9 1.0
GPIO1 [1] 0.8 0.8 0.8 1.0
GPIO2 [1] 1.0 1.0 1.0 1.1
GPIO3 [1] 1.1 1.1 1.1 1.3
GPIO4 [1] 1.0 1.0 1.0 1.2
GPIO5 [1] 0.7 0.7 0.7 0.8
DMA 0.7 0.7 0.7 0.8
CRC 1.0 1.0 1.0 1.0
ADC0 1.6 1.6 1.6 1.9
SCTimer/PWM 4.5 4.5 4.5 5.3
Ethernet AVB 24.0 24.0 24.0 28.0
LCD 13.0 13.0 13.0 15.0
EEPROM 1.1 1.1 1.1 1.2
EMC 39.0 39.0 39.0 45.4
CAN0 10.8 10.8 10.8 12.6
CAN1 10.7 10.7 10.7 12.4
SD/MMC 7.9 7.9 7.9 9.3
Flexcomm In terface 0
(USART, SPI, I2C) 1.6 1.6 1.6 1.9
Flexcomm Interface1
(USART, SPI, I2C) 1.6 1.6 1.6 1.8
Flexcomm In terface 2
(USART, SPI, I2C) 1.7 1.7 1.7 1.9
Flexcomm In terface 3
(USART, SPI, I2C) 1.4 1.4 1.4 1.6
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 92 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Flexcomm In terface 4
(USART, SPI, I2C) 1.4 1.5 1.5 1.7
Flexcomm In terface 5
(USART, SPI, I2C) 1.7 1.7 1.7 1.9
Flexcomm In terface 6
(USART, SPI, I2C, I2S) 2.0 2.0 2.0 2.3
Flexcomm In terface 7
(USART, SPI, I2C, I2S) 1.6 1.6 1.6 1.9
Flexcomm In terface 8
(USART, SPI, I2C) 1.5 1.5 1.5 1.8
Flexcomm In terface 9
(USART, SPI, I2C) 1.5 1.5 1.5 1.8
Sync APB peripheral CPU: 12 MHz, sync
APB bus: 12 MH z CPU: 48 MHz, sync
APB bus: 48 MHz CPU: 96 MHz, sync
APB bus: 96 MHz CPU: 180 MHz, sync
APB bus: 180 MHz
INPUTMUX [1] 0.83 0.85 0.86 1.0
IOCON [1] 2.67 2.65 2.65 3.13
PINT 1.1 1.1 1.1 1.3
GINT0 and GINT1 1.33 1.35 1.34 1.52
WWDT 0.42 0.42 0.42 0.46
RTC 0.3 0.3 0.3 0.3
MRT 0.3 0.3 0.3 0.3
RIT 0.1 0.1 0.1 0.1
UTICK 0.2 0.2 0.2 0.2
CTimer0 0.8 0.8 0.8 0.9
CTimer1 0.8 0.9 0.9 1.0
CTimer2 0.83 0.85 0.88 0.99
Smart card0 2.5 2.5 2.5 2.8
Smart card1 2.5 2.5 2.5 2.8
RNG 1.4 1.4 1.4 1.5
OTP controller 4.0 4.0 4.0 4.5
Table 20 . Typical AHB/APB peripheral power consumption [3][4][5]
Tamb = 25 °C, VDD = 3.3 V;
Peripheral IDD in uA/MHz IDD in uA/MHz IDD in uA/MHz IDD in uA /MHz
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 93 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Turn off the peripheral when the configuration is done.
[2] For optimal system power consumption, use fixed low frequency Async APB bus when the CPU is at a
higher frequency.
[3] The supply current per peripheral is measured as the difference in supply current between the peripheral
block enabled and the peripheral block disabled using ASYNCAPBCLKCTRL, AHBCLKCTRL0/1, and
PDRUNCFG0/1 registers. All other blocks are disabled and no code accessing the peripheral is executed.
[4] The supply currents are shown for system clock frequencies of 12 MHz, 48 MHz, 96 MHz and 180 MHz.
[5] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.
10.5 Pin characteristics
Async APB peripheral CPU: 12 MHz,
Async APB bus: 12
MHz
CPU: 48 MHz, sync
APB bus: 12 MHz[2] CPU: 96 MHz,
Async APB bus: 12
MHz[2]
CPU: 180 MHz,
Async APB bus:
12 MHz[2]
Timer3 0.9 0.9 0.9 0.9
Timer4 0.9 0.9 0.9 0.9
Table 20 . Typical AHB/APB peripheral power consumption [3][4][5]
Tamb = 25 °C, VDD = 3.3 V;
Peripheral IDD in uA/MHz IDD in uA/MHz IDD in uA/MHz IDD in uA /MHz
Table 21 . Static characteristics: pin characteristics
Tamb =
40
C to +105
C, unless otherwise specified. 1.71 V
VDD
3.6 V unless otherwise specified. Values tested in
production unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
RESET pin
VIH HIGH-level input voltage 0.8 VDD -5.0V
VIL LOW-level input voltage 0.5 - 0.3 VDD V
Vhys hysteresis voltage [14] 0.05 VDD -- V
Standard I/O pins
Input characteristics
IIL LOW-level input current VI= 0 V; on-chip pull-up resistor
disabled. -3.0180nA
IIH HIGH-level input current VI=V
DD; VDD = 3.6 V; for RESETN
pin. 3.0 180 nA
IIH HIGH-level input current VI=V
DD; on-chip pull-down resistor
disabled -3.0180nA
VIinput voltage pin configured to provide a digital
function;
VDD 1.8 V
[3]
0-5.0V
VDD = 0 V 0 - 3.6 V
VIH HIGH-level input voltage 1.71 V VDD < 2.7 V 1.5 - 5.0 V
2.7 V VDD 3.6 V 2.0 - 5.0 V
VIL LOW-level input voltage 1.71 V VDD <2.7 V 0.5 - +0.4 V
2.7 V VDD 3.6 V 0.5 - +0.8 V
Vhys hysteresis voltage [14] 0.1 VDD -- V
Output characteristics
VOoutput voltage output active 0 - VDD V
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 94 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
IOZ OFF-state output current VO=0V; V
O= VDD; on-chip
pull-up/pull-down resistors disabled -3180nA
VOH HIGH-level output voltage IOH =4 mA; 1.71 V VDD < 2.7 V VDD 0.4 - - V
IOH =6 mA; 2.7 V VDD 3.6 V VDD 0.4
VOL LOW -l evel output voltag e IOL = 4 mA; 1.71 V VDD < 2.7 V - - 0.4 V
IOL = 6 mA; 2.7 V VDD 3.6 V - - 0.4 V
IOH HIGH-level output current VOH =V
DD 0.4 V;
1.1.71 V VDD < 2.7 V 4.0 - - mA
VOH =V
DD 0.4 V;
2.7 V VDD 3.6 V 6.0 - - mA
IOL LOW- l evel output current VOL = 0.4 V; 1.71 V VDD < 2.7 V 4.0 - - mA
VOL = 0.4 V; 2.7 V VDD 3.6 V 6.0 - - mA
IOHS HIGH-level short-circuit
output current 1.71 V VDD < 2.7 V [2][4] --35mA
drive HIGH; connected to
ground; 2.7 V VDD 3.6 V - - 87 mA
IOLS LOW-level short-circuit
output current 1.71 V VDD < 2.7 V [2][4] --30mA
drive LOW; connected to
VDD
2.7 V VDD 3.6 V - - 77 mA
Weak input pull-up/pull-down characteristics
Ipd pull-down current VI = VDD 25 80 A
VI = 5 V [2] 80 100 A
Ipu pull-up current VI = 0 V 25 80 A
VDD < VI < 5 V [2][7] 630A
Open-drain I2C pins
VIH HIGH-level input voltage 1.71 V VDD < 2.7 V 0.7 VDD -- V
2.7 V VDD 3.6 V 0.7 VDD -- V
VIL LOW-level input voltage 1.71 V VDD < 2.7 V 0 - 0.3 VDD V
2.7 V VDD 3.6 V 0 - 0.3 VDD V
Vhys hysteresis voltage 0.1 VDD -- V
ILI input leakage current VI=V
DD [5] -2.53.5A
VI=5V - 5.5 10 A
IOL LOW- l evel output
current VOL = 0.4 V; pin configured for
standard mode or fast mode 4.0 - - mA
VOL = 0.4V; pin configured for
Fast-mode Plus 20 - - mA
Table 21 . Static characteristics: pin characteristics …continued
Tamb =
40
C to +105
C, unless otherwise specified. 1.71 V
VDD
3.6 V unless otherwise specified. Values tested in
production unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 95 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltage.
[2] Based on characterization. Not tested in production.
[3] With respect to ground.
[4] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
[5] To VSS.
[6] The values specified are simulated and absolute values, including package/bondwire capacitance.
[7] The weak pull-up resistor is connected to the VDD rail and pulls up the I/O pin to the VDD level.
[8] The value specified is a simulated value, excluding package/bondwire capacitance.
[9] Without 33 2 % series external resistor.
[10] The parameter values specified are simulated and absolute values.
[11] With 33 2 % series external resistor.
[12] With 15 K 5 % resistor to VSS.
[13] With 1.5 K 5% resistor to 3.6 V external pull-up.
[14] Guaranteed by design, not tested in production.
USB0_DM and USB0_DP pins
VIinput voltage 0 - VDD V
VIH HIGH-level input voltage 2.0 - - V
VIL LOW-level input voltage - - 0.8 V
Vhys hysteresis voltage 0.4 - - V
Zout output impedance [11] 33.0 - 44
VOH HIGH-level output voltage [12] 2.8 - - V
VOL LOW- l evel output voltag e [13] --0.3V
IOH HIGH-level output current VOH =V
DD 0.3 V [9][10] 38 - 74 mA
VOH =V
DD 0.3 V [10][11] 6.0 9.0 mA
IOL LOW- l evel output current VOL = 0.3 V [9][10] 38 - 74 mA
VOL = 0.3 V [10][11] 6.0 9.0 mA
IOLS LOW-level short-circuit
output current drive LOW; pad connected to
ground [10] --100mA
IOHS HIGH-level short-circuit
output current drive HIGH; pad connected to
ground [10] --100mA
Pin capacitanc e
Cio input/output capacitance I2C-bus pins [8] --6.0pF
pins with digital functions only [6] --2.0pF
Pins with digital and analog
functions [6] --7.0pF
Table 21 . Static characteristics: pin characteristics …continued
Tamb =
40
C to +105
C, unless otherwise specified. 1.71 V
VDD
3.6 V unless otherwise specified. Values tested in
production unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 96 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
10.5.1 Electrical pin characteristics
Fig 15. Pin input/output current measurement
aaa-010819
+-
pin PIO0_n
IOH
Ipu
-+
pin PIO0_n
IOL
I
pd
V
DD
A
A
Conditions: VDD = 1.8 V; on pins PIO0_13 to PIO0_14. Conditions: VDD = 3.3 V; on pins PIO0_13 to PIO0_16.
Fig 16. I2C-bus pins (high current sink): Typical LOW-level output current IOL ve rsus LOW-level output voltage
VOL
DDD
     






92/9
,2/2/
,2/
P$P$P$
&&&
&&&
&&&
&&&
DDD
     




92/9
,2/2/
,2/
P$P$P$
&&&
&&&
&&&
&&&
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 97 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Conditions: VDD = 1.8 V; on standard port pins. Conditions: VDD = 3.3 V; on standard port pins.
Fig 17. Typical LOW-level output current IOL versus LOW-level output voltage VOL
DDD
     


92/9
,2/2/
,2/
P$P$P$
&&&
&&&
&&&
&&&
DDD
     


92/9
,2/2/
,2/
P$P$P$
&&&
&&&
&&&
&&&
Conditions: VDD = 1.8 V; on standard port pins. Conditions: VDD = 3.3 V; on standard port pins.
Fig 18. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH
DDD
    







,2+P$
92+2+
92+
999
&&&
&&&
&&&
&&&
DDD
   





,2+P$
92+2+
92+
999
&&&
&&&
&&&
&&&
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 98 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Conditions: VDD = 1.8 V; on standard port pins. Conditions: VDD = 3.3 V; on standard port pins.
Fig 19. Typical pull-up current IPU versus input voltage VI
DDD
       




9,9
,SXSX
,SX
$$$
&&&
&&&
&&&
&&&
DDD
     







9,9
,SXSX
,SX
$$$
&&&
&&&
&&&
&&&
Conditions: VDD = 1.8V; on standard port pins. Conditions: VDD = 3.3 V; on standard port pins.
Fig 20. Typica l pu ll-down current IPD versus input voltage VI
DDD
     





9,9
,SGSG
,SG
$$$
&&&
&&&
&&&
&&&
DDD





9,9
,SGSG
,SG
$$$
&&&
&&&
&&&
&&&
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 99 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11. Dynamic characteristics
11.1 Flash memory
[1] Number of erase/program cycles.
[2] Programming times are given for writing 512 bytes from RAM to the flash. Data must be written to the flash
in blocks of 512 bytes.
11.2 EEPROM
[1] See the LPC546xx user manual, UM10912 on how to program the wait states for the different read
(RPHASEx) and erase/program phases (PHASEx).
Remark: EEPROM is not accessible in deep-sleep and deep power-down modes
Table 22. Flash characteristics
Tamb =
40
C to +105
C, unless otherwise specified. VDD = 1.71 V to 3.6 V
Symbol Parameter Conditions Min Typ Max Unit
Nendu endurance sector erase/program [1] 10000 - - cycles
page erase/program; page
in a sector 1000 - - cycles
tret retention time powered 10 - - years
unpowered 10 - - years
ter erase time page, sector, or multiple
consecutive sectors -100-ms
tprog programming
time [2] -1-ms
Table 23. EEPROM characteristics
Tamb =
40
Cto+85
C; VDD =1.71Vto3.6V.
Symbol Parameter Conditions Min Typ Max Unit
fclk clock frequency 800 1500 1600 kHz
Nendu endurance 100000 - - cycles
tret retention time Tamb =40 Cto
+85 C20 - - years
taaccess time read - 100 - ns
erase/program;
fclk = 1500 kHz -1.99-ms
erase/program;
fclk = 1600 kHz -1.87-ms
twait wait time read; RPHASE1 [1] 70 - - ns
read; RPHASE2 [1] 35 - - ns
write; PHASE1 [1] 20 - - ns
write; PHASE2 [1] 40 - - ns
write; PHASE3 [1] 10 - - ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 100 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.3 I/O pins
[1] Simulated data, not tested in production.
[2] Simulated using 10 cm of 50 PCB trace with 5 pF receiver input. Rise and fall times measured between
80 % and 20 % of the full output signal level.
[3] The slew rate is configured in the IOCON block the SLEW bit. See the LPC546xx user manual.
[4] CL = 20 pF. Rise and fall times measured between 90 % and 10 % of the full input signal level.
Table 24 . Dynamic characteristic: I/O pins[1]
Tamb =
40
C to +105
C; 1.71 V
VDD
3.6 V
Symbol Parameter Conditions Min Typ Max Unit
Standard I/O pins - normal drive strength
trrise time pin configured as output; SLEW = 1
(Fast-mode);
2.7 V VDD <= 3.6 V
[2][3]
1.0 - 2.5 ns
1.71 V VDD <= 1.98 V 1.6 - 3.8 ns
tffall time pin configured as output; SLEW = 1
(Fast-mode);
2.7 V VDD <= 3.6 V
[2][3]
0.9 - 2.5 ns
1.71 V VDD <= 1.98 V 1.7 - 4.1 ns
trrise time pin configured as output; SLEW = 0 (standard
mode);
2.7 V VDD 3.6 V
[2][3]
1.9 - 4.3 ns
1.71 V VDD 1.98 V 2.9 - 7.8 ns
tffall time pin configured as output; SLEW = 0 (standard
mode);
2.7 V VDD 3.6 V
[2][3]
1.9 - 4.0 ns
1.71 V VDD 1.98 V 2.7 - 6.7 ns
trrise time pin co nfigured as input [4] 0.3 - 1.3 ns
tffall time pin configured as inpu t [4] 0.2 - 1.2 ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 101 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.4 Wake-up process
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[2] The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up
from the low power modes and from when a GPIO output pin is set in the interrupt service routine (ISR)
wake-up handler.
[3] FRO enabled, all peripherals off. PLL disabled.
[4] RTC disabled. Wake up from deep power-down causes the part to go through entire reset
process. The wake-up time measured is the time between w hen the RESET pin is triggered to wake the
device up and when a GPIO output pin is set in the reset handler.
[5] FRO disabled.
Table 25. Dynamic characteristic: Typical wake-up times from low power modes
VDD = 3.3 V;Tamb =25
C; using FRO as the system clock.
Symbol Parameter Conditions Min Typ[1] Max Unit
twake wake-up
time from sleep mode [2][3] -2.0 -s
from deep-sleep mode; SRAMx
powered.
SRAM0, SRAM1, SRAM2,
SRAM3, and USB SRAM powered
down.
[2][5] -19 -s
from deep power-down mode;
RTC disabled; using RESET pin. [4][5] -1.2 -ms
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 102 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.5 External memory interface
Table 26. Dy namic characteristics: Static exte rnal memory interface
CL= 10 pF balanced loading on all pins, Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding
delays introduced by external de vice and PCB; Valu es based on simulation.
Symbol Parameter[1] Conditions[1] Min Typ Max Unit
Read cycle parameters
tCSLAV CS LOW to address
valid time RD11.2 - 1.6 ns
tCSLOEL CS LOW to OE LOW
time RD2[2] 0.4+ Tcy(clk)
WAITOEN -0.8+ T
cy(clk)
WAITOEN ns
tCSLBLSL CS LOW to BLS LOW
time RD3; PB = 1 [2][6] 1.6 - 0 ns
tOELOEH OE LOW to OE HIGH
time RD4[2] (WAITRD
WAITOEN + 1)
Tcy(clk)
-0.3
+ (WAITRD
WAITOEN + 1)
Tcy(clk)
ns
tam memory access time RD5[2][3] 6.7
+ (WAIT RD
WAITOEN +1)
Tcy(clk)
--ns
th(D) data input hold time RD6[2][4] 4.8 - - ns
tCSHBLSH CS HIGH to BLS HIGH
time PB = 1 [6] 0.8 - 1.5 ns
tCSHOEH CS HIGH to OE HIGH
time [2] 0.5 - 0.9 ns
tOEHANV OE HIGH to address
invalid time [2] 0.4 - 0 ns
tdeact deactivation time RD7[2] 0.5 - 0.9 ns
Write cycle parameters
tCSLAV CS LOW to address
valid time WR10.1 - 0.5 ns
tCSLDV CS LOW to data valid
time WR21.0 - 2.2 ns
tCSLWEL CS LOW to WE LOW
time WR3; PB =1 [2][6] 0.6 - 0 ns
tCSLBLSL CS LOW to BLS LOW
time WR4; PB = 1 [2][6] 1.2 - 0 ns
tWELWEH WE LOW to WE HIGH
time WR5; PB =1 [2][6] (WAITWR
WAITWEN + 1)
Tcy(clk)
-0.1
+ (WAIT WR
WAITWEN + 1)
Tcy(clk)
ns
tBLSLBLSH BLS LOW to BLS
HIGH time PB = 1 [2][6] 2.5 - 5.5 ns
tWEHDNV WE HIGH to data
invalid time WR6; PB =1 [2][6] 1.6 - 2.9 ns
tWEHEOW WE HIGH to end of
write time WR7; PB = 1 [2][5][6] 0.6 - 0.9 ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 103 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Parameters are shown as RDn or WDn in Figure 21 as indicated in the Conditions column.
[2] Tcy(clk) = 1/EMC_CLK (see UM10912 LPC546xx manual).
[3] Latest of address valid, EMC_CSx LOW, EMC_OE LOW, EMC_BLSx LOW (PB = 1).
[4] After End Of Read (EOR): Earliest of EMC_CSx HIGH, EMC_OE HIGH, EMC_BLSx HIGH (PB = 1), address invalid.
[5] End Of Write (EOW): Earliest of address invalid, EMC_CS x HIGH, EMC_BLSx HIGH (PB = 1).
[6] The byte lane state bit, PB, enables different types of memory to be connected (see the STATICCONFIG[0:3] register in the UM10912
LPC546xx manual).
tBLSHDNV BLS HIGH to data
invalid time PB = 1 [6] 0.8 - 0 ns
tWEHANV WE HIGH to address
invalid time PB = 1 [6] 0.6 - 0.9 ns
tdeact deactivation time WR8; PB = 0;
PB = 1 [2][6] 0.8 - 0 ns
tCSLBLSL CS LOW to BLS LOW WR9; PB = 0 [2][6] 1.2
+ (W AITWEN + 1)
Tcy(clk)
- (WAITWEN + 1)
Tcy(clk)
ns
tBLSLBLSH BLS LOW to BLS
HIGH time WR10; PB = 0 [2][6] 2.5
+ (WAIT WR
WAITWEN + 1)
Tcy(clk)
-5.5
+ (WAIT WR
WAITWEN + 1)
Tcy(clk)
ns
tBLSHEOW BLS HIGH to end of
write time WR11; PB = 0 [2][5][6] 0.8
+ Tcy(clk)
-T
cy(clk) ns
tBLSHDNV BLS HIGH to data
invalid time WR12;
PB = 0 [2][6] 0.2 + Tcy(clk) - 0.5 + Tcy(clk) ns
Table 26. Dy namic characteristics: Static exte rnal memory interface …continued
CL= 10 pF balanced loading on all pins, Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding
delays introduced by external de vice and PCB; Valu es based on simulation.
Symbol Parameter[1] Conditions[1] Min Typ Max Unit
Table 27. Dy namic characteristics: Static exte rnal memory interface
CL= 20 pF balanced loading on all pins, Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding
delays introduced by external de vice and PCB; Valu es based on simulation.
Symbol Parameter[1] Conditions[1] Min Typ Max Unit
Read cycle parameters
tCSLAV CS LOW to address
valid time RD11.2 - 1.6 ns
tCSLOEL CS LOW to OE LOW
time RD2[2] 0.5+ Tcy(clk)
WAITOEN -0.8+ T
cy(clk) WAITOEN ns
tCSLBLSL CS LOW to BLS LOW
time RD3; PB = 1 [2][6] 2.3 - 0 ns
tOELOEH OE LOW to OE HIGH
time RD4[2] (WAITRD
WAITOEN + 1)
Tcy(clk)
-0.3
+ (WAITRD
WAITOEN + 1) Tcy(clk)
ns
tam memory access time RD5[2][3] 7.9
+ (WAIT RD
WAITOEN +1)
Tcy(clk)
-- ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 104 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Parameters are shown as RDn or WDn in Figure 21 as indicated in the Conditions column.
th(D) data input hold time RD6[2][4] 5.5 - - ns
tCSHBLSH CS HIGH to BLS HIGH
time PB = 1 [6] 0.7 - 1.5 ns
tCSHOEH CS HIGH to OE HIGH
time [2] 0.5 - 0.9 ns
tOEHANV OE HIGH to address
invalid time RD8[2] 0.4 - 0 ns
tdeact deactivation time RD7[2] 0.5 - 0.9 ns
Write cycle parameters[2]
tCSLAV CS LOW to address
valid time WR10.1 - 0.5 ns
tCSLDV CS LOW to data valid
time WR21-2.2 ns
tCSLWEL CS LOW to WE LOW
time WR3; PB =1 [2][6] 0.5 +
(WAITWEN + 1)
Tcy(clk)
- (WAITWEN + 1) Tcy(clk) ns
tCSLBLSL CS LOW to BLS LOW
time WR4; PB = 1 [2][6] 1.9 - 0 ns
tWELWEH WE LOW to WE HIGH
time WR5; PB =1 [2][6] 0.1 +
(WAITWEN + 1)
Tcy(clk)
- (WAITWEN + 1) Tcy(clk) ns
tBLSLBLSH BLS LOW to BLS
HIGH time PB = 1 [2][6] 3.1 - 6.7 ns
tWEHDNV WE HIGH to data
invalid time WR6; PB =1 [2][6] 1.6 + Tcy(clk) - 2.8 + Tcy(clk) ns
tWEHEOW WE HIGH to end of
write time WR7; PB = 1 [2][5][6] 0.5+Tcy(clk) - 0.8 + Tcy(clk) ns
tBLSHDNV BLS HIGH to data
invalid time PB = 1 [6] 0.8 - 0 ns
tWEHANV WE HIGH to address
invalid time PB = 1 [6] 0.5 - 0.8 ns
tdeact deactivation time WR8; PB = 0;
PB = 1 [2][6] 0.8 - 0 ns
tCSLBLSL CS LOW to BLS LOW WR9; PB = 0 [2][6] 1.9
+ (W AITWEN + 1)
Tcy(clk)
- (WAITWEN + 1) Tcy(clk) ns
tBLSLBLSH BLS LOW to BLS
HIGH time WR10; PB = 0 [2][6] 3.1+ (WAITWR
WAITWEN + 1)
Tcy(clk)
-6.7+ (WAITWR
WAITWEN + 1) Tcy(clk) ns
tBLSHEOW BLS HIGH to end of
write time WR11; PB = 0 [2][5][6] 0.8
+ Tcy(clk)
-T
cy(clk) ns
tBLSHDNV BLS HIGH to data
invalid time WR12;
PB = 0 [2][6] 0.2 + Tcy(clk) - 0.5 + Tcy(clk) ns
Table 27. Dy namic characteristics: Static exte rnal memory interface …continued
CL= 20 pF balanced loading on all pins, Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding
delays introduced by external de vice and PCB; Valu es based on simulation.
Symbol Parameter[1] Conditions[1] Min Typ Max Unit
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 105 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[2] Tcy(clk) = 1/EMC_CLK (see UM10912 LPC546xx manual).
[3] Latest of address valid, EMC_CSx LOW, EMC_OE LOW, EMC_BLSx LOW (PB = 1).
[4] After End Of Read (EOR): Earliest of EMC_CSx HIGH, EMC_OE HIGH, EMC_BLSx HIGH (PB = 1), address invalid.
[5] End Of Write (EOW): Earliest of address invalid, EMC_CS x HIGH, EMC_BLSx HIGH (PB = 1).
[6] The byte lane state bit, PB, enables different types of memory to be connected (see the STATICCONFIG[0:3] register in the UM10912
LPC546xx manual).
Fig 21. External static memory read/write access (PB = 0)
RD1
RD5
RD2
WR2
WR9
WR12
WR10 WR11
RD5b
RD5a
RD6
WR8
WR1
EOR EOW
RD7
RD4
EMC_Ax
EMC_CSx
EMC_OE
EMC_BLSx
EMC_WE
EMC_Dx
aaa-026103
RD8
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 106 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 22. External static memory read/write access (PB =1)
RD1WR1
EMC_Ax
WR8
WR4
WR8
EMC_CSx
RD2
RD7
RD7
RD4
EMC_OE
EMC_BLSx
EMC_WE
RD5
WR6
WR2
RD5b
RD5c
RD5a
RD6
RD3
EOR EOW
EMC_Dx
WR3WR5WR7
aaa026104
RD8
Fig 23. Exte rnal static memory burst read cycle
RD5RD5RD5RD5
EMC_Ax
EMC_CSx
EMC_OE
EMC_BLSx
EMC_WE
EMC_Dx
002aag216
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 107 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Refers to SDRAM clock signal EMC_CLKOUTn where n = 0 and 1.
[2] See Table 30 for internal programmable delay.
Table 28. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 01 [2]
CL= 10 pF balanced loading on all pins, Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding
delays introduced by external de vice and PCB. Values based on simulation. tcmddly is programmable delay value for EMC
command outputs in command delayed mode; tfbdly is programmable delay value for the feedback clock that controls input
data sampling.
Symbol Parameter Min Typ Max Unit
For RD = 1
Common to read and write cycles
Tcy(clk) clock cycle time [1] 10 - - ns
td(SV) chip select valid delay time - - tcmddly + 3.7 ns
th(S) chip select hold time tcmddly + 1.7 - - ns
td(RASV) row address strobe valid
delay time --t
cmddly + 4.1 ns
th(RAS) row address strobe hold
time tcmddly + 1.8 - - ns
td(CASV) column address strobe valid
delay time --t
cmddly + 4.4 ns
th(CAS) column address strobe hold
time tcmddly + 1.9 - - ns
td(WV) write valid delay time - - tcmddly + 5.1 ns
th(W) write hold time tcmddly + 2.4 - - ns
td(AV) address valid delay time - - tcmddly + 4.8 ns
th(A) address hold time tcmddly + 1.7 - - ns
Read cycle parameters
tsu(D) data input set-up time 0.5 - - ns
th(D) data input hold time 2.1 - - ns
Write cycle parameters
td(QV) data output valid delay time - - 8.1 ns
th(Q) data output hold time 1.7 - - ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 108 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Refers to SDRAM clock signal EMC_CLKOUTn where n = 0 and 1.
[2] See Table 30 for internal programmable delay.
Table 29. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 01 [2]
CL= 20 pF balanced loading on all pins, Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding
delays introduced by external de vice and PCB. Values based on simulation. tcmddly is programmable delay value for EMC
command outputs in command delayed mode; tfbdly is programmable delay value for the feedback clock that controls input
data sampling.
Symbol Parameter Min Typ Max Unit
For RD = 1
Common to read and write cycles
Tcy(clk) clock cycle time [1] 10 - - ns
td(SV) chip select valid delay time - - tcmddly + 4.9 ns
th(S) chip select hold time tcmddly + 2.4 - - ns
td(RASV) row address strobe valid
delay time --t
cmddly + 5.4 ns
th(RAS) row address strobe hold
time tcmddly + 2.5 - - ns
td(CASV) column address strobe valid
delay time --t
cmddly + 5.6 ns
th(CAS) column address strobe hold
time tcmddly + 2.6 - - ns
td(WV) write valid delay time - - tcmddly + 6.3 ns
th(W) write hold time tcmddly + 3.1 - - ns
td(AV) address valid delay time - - tcmddly + 6.1 ns
th(A) address hold time tcmddly + 2.4 - - ns
Read cycle parameters
tsu(D) data input set-up time 0.5 - - ns
th(D) data input hold time 2.1 - - ns
Write cycle parameters
td(QV) data output valid delay time - - 9.3 ns
th(Q) data output hold time 2.4 - - ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 109 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 24. Dynam ic external memory interface signal timing
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 110 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] The programmable delay blocks are controlled by the EMCDLYCTL register in the EMC register block. All
delay times are incremental delays for each element starting from delay block 0. See the LPC546xx user
manual for details.
Table 30. Dynamic characteristics: Dynamic external memory interface programma ble clock delays (CMDDLY,
FBCLKDLY)
Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V.Values guaranteed by design. tcmddly is programmable delay value for EMC
command outputs in command delayed mode; tfbdly is programmable delay value for the feedback clock that controls input
data sampling.
Symbols Parameter Five bit value for each delay in EMCDLYCTL[1] Min Typ Max Unit
tcmddly, tfbdly delay time b00000 0.41 0.66 0.77 ns
b00001 0.52 0.85 1.03 ns
b00010 0.69 1.11 1.3 ns
b00011 0.8 1.3 1.56 ns
b00100 0.95 1.53 1.77 ns
b00101 1.06 1.72 2.03 ns
b00110 1.23 1.98 2.3 ns
b00111 1.34 2.17 2.56 ns
b01000 1.45 2.3 2.67 ns
b01001 1.56 2.49 2.93 ns
b01010 1.73 2.75 3.2 ns
b01011 1.84 2.94 3.46 ns
b01100 1.99 3.17 3.67 ns
b01101 2.1 3.36 3.93 ns
b01110 2.27 3.62 4.2 ns
b01111 2.38 3.81 4.46 ns
b10000 2.45 3.86 4.46 ns
b10001 2.56 4.05 4.72 ns
b10010 2.73 4.31 4.99 ns
b10011 2.84 4.5 5.25 ns
b10100 2.99 4.73 5.46 ns
b10101 3.1 4.92 5.72 ns
b10110 3.27 5.18 5.99 ns
b10111 3.38 5.37 6.25 ns
b11000 3.49 5.5 6.36 ns
b11001 3.6 5.69 6.62 ns
b11010 3.77 5.95 6.89 ns
b11011 3.88 6.14 7.15 ns
b11100 4.03 6.37 7.36 ns
b11101 4.14 6.56 7.62 ns
b11110 4.31 6.82 7.89 ns
b11111 4.42 7.01 8.15 ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 111 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.6 System PLL (PLL0)
[1] Data based on characterization results, not tested in production.
[2] PLL current measured using lowest CCO frequency to obtain the desired output frequency.
[1] Data based on characterization results, not tested in production.
[2] Excluding under- and overshoot which may occur when the PLL is not in lock.
[3] A phase difference between the inputs of the PFD (clkref and clkfb) smaller than the PFD lock criterion
means lock output is HIGH.
[4] Actual jitter dependent on amplitude and spectrum of substrate noise.
[5] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.
Table 31. PLL lock times and curren t
Tamb =
40
C to +105
C, unless otherwise specified. VDD = 1.71 V to 3.6 V
Symbol Parameter Conditions Min Typ Max Unit
PLL0 configuration: input frequency 12 MHz; output frequency 100 MHz
tlock(PLL0) PLL0 lock time [1] 96 s
IDD(PLL0) PLL0 current when locked [1][2] --2.0mA
PLL0 configuration: inpu t frequency 32 kHz; output frequency 100 MHz
tlock(PLL0) PLL0 lock time [1] - - 108 s
IDD(PLL0) PLL0 current when locked [1][2] --1.6mA
Table 32. Dynamic characteristics of the PLL0[1]
Symbol Parameter Conditions Min Typ Max Unit
Referenc e cl oc k input
Fin input frequency 32.768 kHz - 25 MHz
Clock output
fooutput frequency for PLL0 clkout output [2] 4.3 - 550 MHz
dooutput duty cycle for PLL0 clkout output 46 - 54 %
fCCO CCO frequency 275 - 550 MHz
Lock detector output
lock(PFD) PFD lock criterion [3] 124 ns
Dynamic parameters at fout = fCCO = 540 MHz; standard bandwidth settings
Jrms-interval RMS interval jitter fref = 10 MHz [4][5] -1530 ps
Jpp-period peak-to-peak, period jitter fref = 10 MHz [4][5] -4080 ps
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 112 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.7 USB PLL (PLL1)
[1] Data based on characterization results, not tested in production.
[2] PLL current measured using lowest CCO frequency to obtain the desired output frequency.
[1] Data based on simulation, not tested in production.
[2] Excluding under- and overshoot which may occur when the PLL is not in lock.
[3] Actual jitter dependent on amplitude and spectrum of substrate noise.
[4] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.
11.8 Audio PLL (PLL2)
[1] Data based on characterization results, not tested in production.
[2] PLL current measured using lowest CCO frequency to obtain the desired output frequency.
Table 33. PLL1 lock times and current
Tamb =
40
C to +105
C, unless otherwise specified. VDD = 1.71 V to 3.6 V
Symbol Parameter Conditions Min Typ Max Unit
PLL1 configuration: input frequency 12 MHz; output frequen cy 48 MHz
tlock(PLL1) PLL1 lock time [1] -7.4- s
IDD(PLL1) PLL1 current When locked [1][2] - 260 - A
Table 34. Dynamic characteristics of the PLL1[1]
Symbol Parameter Conditions Min Typ Max Unit
Reference clock input
Fin input frequency 1 - 25 MHz
Clock output
fooutput frequency for PLL1 clkout
output [2] 9.75 - 160 MHz
dooutput duty cycle for PLL1 clkout
output 45 - 55 %
fCCO CCO frequency 156 - 320 MHz
Dynamic parameters a t fout = fCCO = 320 MHz; standard bandwidth settings
Jpp-period peak-to-peak, period
jitter fref = 4 MHz [3][4] - - 300 ps
Table 35. PLL2 lock times and current
Tamb =
40
C to +105
C, unless otherwise specified. VDD = 1.71 V to 3.6 V
Symbol Parameter Conditions Min Typ Max Unit
PLL2 configuration: input frequency 12 MHz; output frequency 100 MHz
tlock(PLL2) PLL2 lock time [1] --96 s
IDD(PLL2) PLL2 current when locked [1][2] --2.0mA
PLL2 configuration: input frequency 12 MHz; output frequency 100 MHz
tlock(PLL2) PLL2 lock time [1] - - 108 s
IDD(PLL2) PLL2 current when locked [1][2] --1.6mA
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 113 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Data based on characterization results, not tested in production.
[2] Excluding under- and overshoot which may occur when the PLL is not in lock.
[3] A phase difference between the inputs of the PFD (clkref and clkfb) smaller than the PFD lock criterion
means lock output is HIGH.
[4] Actual jitter dependent on amplitude and spectrum of substrate noise.
[5] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.
11.9 FRO
The FRO is trimmed to 1 % accuracy over the entire voltage and temperature range.
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
11.10 Crystal oscillator
Table 36. Dynamic characteristics of the PLL2[1]
Symbol Parameter Conditions Min Typ Max Unit
Reference clock input
Fin input frequency 1 - 25 MHz
Clock output
fooutput frequency for PLL2 clkout
output [2] 4.3 - 550 MHz
dooutput duty cycle for PLL2 clkout
output 46 - 54 %
fCCO CCO frequency 275 - 550 MHz
Lock detecto r outpu t
lock(PFD) PFD lock criterion [3] 124 ns
Dynamic parameters a t fout = fCCO = 540 MHz; standard bandwidth settings
Jrms-interval RMS interval jitter fref = 10 MHz [4][5] -1530 ps
Jpp-period peak-to-peak, period
jitter fref = 10 MHz [4][5] -4080 ps
Table 37. Dynamic characteristic: FRO
Tamb =
40
C to +105
C; 1.71 V
VDD
3.6 V.
Symbol Parameter Conditions Min Typ[1] Max Unit
fosc(RC) FRO clock frequency - 11.88 12 12.12 MHz
fosc(RC) FRO clock frequency - 47.52 48 48.48 MHz
fosc(RC) FRO clock frequency - 95.04 96 96.96 MHz
Table 38. Dynamic characteristic: oscillato r
Tamb =
40
C to +105
C; 1.71 V
VDD
3.6 V.[1]
Symbol Parameter Conditions Min Typ[2] Max Unit
Low-frequency mode (1-20 MHz)[4]
tjit(per) period jitter time 5 MHz crystal [3] - 13.2 - ps
10 MHz crystal - 6.6 - ps
15 MHz crystal - 4.8 - ps
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 114 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Parameters are valid over operating temperature range unless otherwise specified.
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[3] Indicates RMS period jitter.
[4] Select Low Frequency range = 0 in the SYSOSCCTRL register.
[5] Select High Frequency = 1 in the SYSOSCCTRL register.
11.11 RTC oscillator
See Section 13.5 for connecting the RTC oscillator to an external clock source.
[1] Parameters are valid over operating temperature range unless otherwise specified.
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
High-frequency mode (20 - 25 MHz)[5]
tjit(per) period jitter time 20 MHz crystal [3] -4.3- ps
25 MHz crystal - 3.7 - ps
Table 38. Dynamic characteristic: oscillato r …continued
Tamb =
40
C to +105
C; 1.71 V
VDD
3.6 V.[1]
Symbol Parameter Conditions Min Typ[2] Max Unit
Table 39. Dynamic characteristic: RTC oscillator
Tamb =
40
C to +105
C; 1.71
VDD
3.6[1]
Symbol Parameter Conditions Min Typ[1] Max Unit
fiinput frequency - - 3 2.768 - kHz
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 115 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.12 Watchdog oscillator
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.
[3] Actual jitter dependent on amplitude and spectrum of substrate noise.
[4] Guaranteed by design. Not tested in production samples.
Table 40. Dynamic characteristics: Watchdog oscillator
Tamb =
40
C to +105
C; 1.71
VDD
3.6[1]
Symbol Parameter Conditions Min Typ[1] Max Unit
fosc(int) internal watchdog oscillator frequency [2] 200 - 1500 kHz
Dclkout clkout duty cycle 48 - 52 %
JPP-CC peak-peak period jitter [3][4] -1 20ns
tstart start-up time [4] -4 - s
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 116 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.13 I2C-bus
[1] Guaranteed by design. Not tested in production.
[2] Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification UM10204 for details.
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to
bridge the undefined region of the falling edge of SCL.
[5] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines
without exceeding the maximum specified tf.
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should
allow for this when considering bus timing.
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or
tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the
acknowledge.
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledg e timing must meet this set-up time.
Table 41. Dynam ic characteristic: I2C-bus pins[1]
Tamb =
40
C to +105
C; 1.71 V
VDD
3.6 V.[2]
Symbol Parameter Conditions Min Max Unit
fSCL SCL clock frequency Standard-mode 0 100 kHz
Fast-mode 0 400 kHz
Fast-mode Plus 0 1 MHz
tffall time [4][5][6][7] Both SDA and SCL signals
Standard-mode - 300 ns
Fast-mode 20 + 0.1
Cb
300 ns
Fast-mode Plus - 120 ns
tLOW LOW period of the SCL clock Standard-mode 4.7 - s
Fast-mode 1.3 - s
Fast-mode Plus 0.5 - s
tHIGH HIGH period of the SCL clock Standard-mode 4.0 - s
Fast-mode 0.6 - s
Fast-mode Plus 0.26 - s
tHD;DAT data hold time [3][4][8] Standard-mode 0 - s
Fast-mode 0 - s
Fast-mode Plus 0 - s
tSU;DAT data set-up time
[9][10] Standard-mode 250 - ns
Fast-mode 100 - ns
Fast-mode Plus 50 - ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 117 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 25. I2C-bus pins clock timing
002aaf425
t
f
70 %
30 %
SDA
t
f
70 %
30 %
S
70 %
30 %
70 %
30 %
t
HD;DAT
SCL
1 / f
SCL
70 %
30 % 70 %
30 %
t
VD;DAT
t
HIGH
t
LOW
t
SU;DAT
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 118 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.14 I2S-bus interface
Table 42. Dy namic characteristics: I2S-bus interface pins [1][4]
Tamb =
40
C to 105
C; VDD = 1.71 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting =
standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.
Symbol Parameter Conditions Min Typ[3] Max Unit
Common to master and slave
tWH pulse width HIGH on pins I2Sx_TX_SCK and I2Sx_RX_SCK[5]
CCLK 100 MHz (Tcyc/2) -1 - (Tcyc/2) +1 ns
CCLK > 100 MHz (Tcyc/2) -1 - (Tcyc/2) +1 ns
tWL pulse width LOW on pins I2Sx_TX_SCK and I2Sx_RX_SCK[5]
CCLK 100 MHz (Tcyc/2) -1 - (Tcyc/2) +1 ns
CCLK > 100 MHz (Tcyc/2) -1 - (Tcyc/2) +1 ns
Master; 1.71 V VDD 2.7 V
tv(Q) data output valid time on pin I2Sx_TX_SDA [2]
CCLK 100 MHz 26.0 - 40.3 ns
CCLK > 100 MHz 25.0 - 39.0 ns
on pin I2Sx_WS
CCLK 100 MHz 26.0 - 41.0 ns
CCLK > 100 MHz 25.0 - 39.6 ns
tsu(D) data input set-up time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
th(D) data input hold time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 6.1 - - ns
CCLK > 100 MHz 6.4 - - ns
Slave; 1.71 V VDD 2.7 V
tv(Q) data output valid time on pin I2Sx_TX_SDA [2]
CCLK 100 MHz 18.8 - 37.1 ns
CCLK > 100 MHz 18.0 - 35.5 ns
tsu(D) data input set-up time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 4.8 - - ns
CCLK > 100 MHz 4.4 - - ns
on pin I2Sx_WS
CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
th(D) data input hold time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
on pin I2Sx_WS
CCLK 100 MHz 3.2 - - ns
CCLK > 100 MHz 3.2 - - ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 119 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Based on characterization; not tested in production.
[2] Clock Divider register (DIV) = 0x0.
[3] Typical ratings are not guaranteed.
[4] The Flexcomm Interface function clock frequency should not be above 48 MHz. See the data rates section
in the I2S chapter (UM10912) to calculate clock and sample rates.
[5] Based on simulation. Not tested in production.
Master; 2.7 V VDD 3.6 V
tv(Q) data output valid time on pin I2Sx_TX_SDA [2]
CCLK 100 MHz 21.4 - 30.4 ns
CCLK > 100 MHz 20.6 - 28.7 ns
on pin I2Sx_WS
CCLK 100 MHz 21.1 - 29 ns
CCLK > 100 MHz 20.3 - 28.3 ns
tsu(D) data input set-up time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 1.3 - - ns
CCLK > 100 MHz 1.0 - - ns
th(D) data input hold time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 2.9 - - ns
CCLK > 100 MHz 3.3 - - ns
Slave; 2.7 V VDD 3.6 V
tv(Q) data output valid time on pin I2Sx_TX_SDA [2]
CCLK 100 MHz 13.8 - 23.6 ns
CCLK > 100 MHz 13 - 21.9 ns
tsu(D) data input set-up time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 4.7 - - ns
CCLK > 100 MHz 4.2 - - ns
on pin I2Sx_WS
CCLK 100 MHz 0.9 - - ns
CCLK > 100 MHz 0.7 - - ns
th(D) data input hold time on pin I2Sx_RX_SDA [2]
CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
on pin I2Sx_WS
CCLK 100 MHz 1.5 - - ns
CCLK > 100 MHz 1.3 - - ns
Table 42. Dy namic characteristics: I2S-bus interface pins [1][4]
Tamb =
40
C to 105
C; VDD = 1.71 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting =
standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.
Symbol Parameter Conditions Min Typ[3] Max Unit
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 120 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 26. I2S-bus timing (master)
Fig 27. I2S-bus timing (slave)
aaa-026799
I2Sx_SCK
I2Sx_TX_SDA
I2Sx_WS
T
cy(clk)
t
f
t
r
t
WH
t
WL
t
v(Q)
t
v(Q)
t
su(D)
t
h(D)
I2Sx_RX_SDA
aaa-026800
Tcy(clk) tftr
tWH
tsu(D) th(D)
tsu(D) th(D)
tWL
I2Sx_SCK
I2Sx_RX_SDA
I2Sx_WS
I2Sx_TX_SDA
tv(Q)
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 121 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.15 SPI interfaces
The actual SPI bit rate depends on the delays introduced by the external trace, the
external device, system clock (CCLK), and capacitive loading. Excluding delays
introduced by external device and PCB, the maximum supported bit rate for SPI master
mode is 71 Mbit/s, and the maximum supported bit rate for SPI slave mode is 14 Mbit/s.
[1] Based on characterization; not tested in production.
Table 43 . SPI dynamic characte ristics[1]
Tamb =
40
C to 105
C; 1.71 V
VDD
3.6 V ; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =
standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge.
Symbol Parameter Conditions Min Typ Max Unit
SPI master 1.71 V VDD 2.7 V
tDS data set-up time CCLK 100 MHz 2.2 - - ns
CCLK > 100 MHz 1.9 - - ns
tDH data hold time CCLK 100 MHz 6.3 - - ns
CCLK > 100 MHz 6.7 - - ns
tv(Q) data output valid time CCLK 100 MHz 2.6 - 5.0 ns
CCLK > 100 MHz 0.3 - 4.7 ns
SPI slave 1.71 V VDD 2.7 V
tDS data set-up time CCLK 100 MHz 1.1 - - ns
CCLK > 100 MHz 0.9 - - ns
tDH data hold time CCLK 100 MHz 2.1 - - ns
CCLK > 100 MHz 2.2 - - ns
tv(Q) data output valid time CCLK 100 MHz 18.8 - 37.0 ns
CCLK > 100 MHz 18.0 - 36.0 ns
SPI master 2.7 V VDD 3.6 V
tDS data set-up time CCLK 100 MHz 2.4 - - ns
CCLK > 100 MHz 2.2 - - ns
tDH data hold time CCLK 100 MHz 4.2 - - ns
CCLK > 100 MHz 4.5 - - ns
tv(Q) data output valid time CCLK 100 MHz 1.8 - 4.6 ns
CCLK > 100 MHz 1.7 - 4.0 ns
SPI slave 2.7 V VDD 3.6 V
tDS data set-up time CCLK 100 MHz 1.2 - - ns
CCLK > 100 MHz 1.0 - - ns
tDH data hold time CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
tv(Q) data output valid time CCLK 100 MHz 14 - 23.9 ns
CCLK > 100 MHz 13.3 - 22.2 ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 122 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 28. SPI master timing
SCK (CPOL = 0)
MOSI (CPHA = 1)
SSEL
MISO (CPHA = 1)
T
cy(clk)
t
DS
t
DH
t
v(Q)
DATA VALID (LSB) DATA VALID
t
v(Q)
SCK (CPOL = 1)
DATA VALID (LSB) DATA VALID
MOSI (CPHA = 0)
MISO (CPHA = 0) t
DS
t
DH
DATA VALID (MSB) DATA VALID (MSB)DATA VALID
DATA VALID (LSB)
DATA VALID (LSB)
t
v(Q)
DATA VALID (MSB) DATA VALID
t
v(Q)
aaa-014969
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB) IDLE
IDLE
IDLE
IDLE
DATA VALID (MSB)
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 123 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 29. SPI slave timing
SCK (CPOL = 0)
MISO (CPHA = 1)
SSEL
MOSI (CPHA = 1)
T
cy(clk)
t
DS
t
DH
t
v(Q)
DATA VALID (LSB) DATA VALID
t
v(Q)
SCK (CPOL = 1)
DATA VALID (LSB) DATA VALID
MISO (CPHA = 0)
MOSI (CPHA = 0) t
DS
t
DH
DATA VALID (MSB) DATA VALID (MSB)DATA VALID
DATA VALID (LSB)
DATA VALID (LSB)
t
v(Q)
DATA VALID (MSB) DATA VALID
t
v(Q)
aaa-014970
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB)
IDLE
IDLE
IDLE
IDLE
DATA VALID (MSB)
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 124 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.16 SPIFI
The actual SPIFI bit rate depends on the delays introduced by the external trace, the
external device, system clock (CCLK), and capacitive loading. Excluding delays
introduced by exte rnal device and PCB, the maximum supp orted bit rate for SPIFI mode is
100 Mbit/s.
[1] Based on simulation; not tested in pro duction.
Table 44. Dynamic characteristics: SPIFI[1]
Tamb =
40
C to 105
C; VDD = 1.71 V to 3.6 V; CL = 30 pF balanced loading on all pins ; Input slew = 1 ns, SLEW set to
standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.
Symbol Parameter Conditions Min Typ Max Unit
SPIFI 1.71 V VDD 2.7 V
tDS data set-up time CCLK 100 MHz 4 - - ns
CCLK > 100 MHz 4 - - ns
tDH data hold time CCL K 100 MHz 6.4 - - ns
CCLK > 100 MHz 6.6 - - ns
tv(Q) data output valid time CCLK 100 MHz 5.7 - 13.7 ns
CCLK > 100 MHz 5.7 - 13.7 ns
SPIFI 2.7 V VDD 3.6 V
tDS data set-up time CCLK 100 MHz 4 - - ns
CCLK > 100 MHz 4 - - ns
tDH data hold time CCL K 100 MHz 3.5 - - ns
CCLK > 100 MHz 3.6 - - ns
tv(Q) data output valid time CCLK 100 MHz 3.3 - 11.5 ns
CCLK > 100 MHz 3.3 - 11.5 ns
In mode 0, MODE3 bit (23) in SPIFI CTRL register is set to '0' (default). The SPIFI drives SCK low
after the rising edge at which the last bit of each command is captured, and keeps it LOW while CS
is HIGH.
Fig 30. SPIFI control register (Mode 0)
SPIFI_SCK
SPIFI data out
SPIFI data in
T
cy(clk)
t
DS
t
DH
t
v(Q)
DATA VALID DATA VALID
t
h(Q)
DATA VALID DATA VALID
002aah409
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 125 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.17 DMIC subsystem
[1] Based on simulated values.
Table 45. Dynamic characteristics[1]
Tamb =
40
C to 105
C; VDD = 2.7 V to 3.6 V; CL = 30 pF balanced loading on al l pins; Input slew = 1 ns, SLEW set to
standard mode for all pins; Bypass bit = 0; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.
Symbol Parameter Conditions Min Typ Max Unit
tDS data set-up time CCLK 100 MHz 14.3 - - ns
CCLK > 100 MHz 14.3 - - ns
tDH data hold time CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
Fig 31. DMIC timing diagram
aaa-017025
CLOCK
DATA
tSU
tDH
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 126 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.18 Smart card interface
[1] Based on simulated values. VDD = 2.7 V - 3.6 V.
Table 46. Dynamic characteristics[1]
Tamb =
40
C to 105
C; VDD = 1.71 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =
standard mode for all pins; Parameters sampled at th e 90 % and 10 % level of the rising or falling edge.
Symbol Parameter Conditions Min Typ Max Unit
2.7 V VDD 3.6 V
tDS data set-up time CCLK 100 MHz 2.1 - - ns
CCLK > 100 MHz 2.1 - - ns
tDH data hold time CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
tv(Q) data output valid time CCLK 100 MHz 11.0 - 22.5 ns
CCLK > 100 MHz 11.0 - 22.5 ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 127 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.19 USART in terface
The actual USART bi t rate depends on the delays introd uced by the external trace, the
external device, system clock (CCLK), and capacitive loading. Excluding delays
introduced by external device and PCB, the maximum supported bit rate for USART
master synchronous mode is 24 Mbit/s, and the maximum supported bit rate for USART
slave synchronous mode is 12.5 Mbit/s.
[1] Based on characterization; not tested in production.
Table 47 . USART dynamic characteristics[1]
Tamb =
40
C to 105
C; VDD = 1.71 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =
standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.
Symbol Parameter Conditions Min Typ Max Unit
USART master (in synchr on ou s mod e) 1.71 V VDD 2.7 V
tsu(D) data input set-up time CCLK 100 MHz 21.2 - - ns
CCLK > 100 MHz 19.7 - - ns
th(D) data input hold time CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
tv(Q) data output valid time CCLK 100 MHz 0 - 4.9 ns
CCLK > 100 MHz 0 - 4.5 ns
USART slave (in synchronous mod e)1.71 V VDD 2.7 V
tsu(D) data input set-up time CCLK 100 MHz 1.7 - - ns
CCLK > 100 MHz 1.5 - - ns
th(D) data input hold time CCLK 100 MHz 1.2 - - ns
CCLK > 100 MHz 1.4 - - ns
tv(Q) data output valid time CCLK 100 MHz 20.2 - 39.5 ns
CCLK > 100 MHz 19.3 - 37.7 ns
USART master (in synchr on ou s mod e) 2.7 V VDD 3.6 V
tsu(D) data input set-up time CCLK 100 MHz 20.5 - - ns
CCLK > 100 MHz 18.9 - - ns
th(D) data input hold time CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
tv(Q) data output valid time CCLK 100 MHz 1.5 - 3.6 ns
CCLK > 100 MHz 1.3 - 3.2 ns
USART slave (in synchronous mode) 2.7 V VDD 3.6 V
tsu(D) data input set-up time CCLK 100 MHz 1.2 - - ns
CCLK > 100 MHz 1 - - ns
th(D) data input hold time CCLK 100 MHz 0 - - ns
CCLK > 100 MHz 0 - - ns
tv(Q) data output valid time CCLK 100 MHz 15.2 - 26.1 ns
CCLK > 100 MHz 14.3 - 24.2 ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 128 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.20 SCTimer/PWM output timing
11.21 USB interface characteristics
[1] Characterized but not implemented as production test. Guaranteed by design.
Fig 32. USART timing
Un_SCLK (CLKPOL = 0)
TXD
RXD
Tcy(clk)
tsu(D) th(D)
tv(Q)
START BIT0
t
vQ)
Un_SCLK (CLKPOL = 1)
START BIT0 BIT1
BIT1
aaa-015074
Table 48 . SCTimer/PWM output dynamic characteristics
Tamb =
40
C to 105
C; 1.71 V
VDD
3.6 V CL = 30 pF. Simulated skew (ove r proc ess, voltage, an d temperature) of any
two SCT fixed-pin output signals; sampled at th e 90 % and 10 % level of the rising or falling edge; values guaranteed by
design.
Symbol Parameter Conditions Min Typ Max Unit
tsk(o) output skew time - 3.4 - 4.5 ns
Table 49. Dynamic characteristics: USB0 pins (full-speed)
CL = 50 pF; Rpu = 1.5 k
on D+ to VDD, unless otherwise specified; 3.0 V
VDD
3.6 V.
Symbol Parameter Conditions Min Typ Max Unit
trrise time 10 % to 90 % 4.0 20 ns
tffall time 10 % to 90 % 4.0 20 ns
tFRFM differential rise and fall time matching tr/t
f90 111.11 %
VCRS output signal crossover voltage 1.3 2.0 V
tFEOPT source SE0 interval of EOP see Figure 33 160 175 ns
tFDEOP source jitter for differential transition
to SE0 transition see Figure 33 2+5ns
tJR1 receiver jitter to next transition 18.5 +18.5 ns
tJR2 receiver jitter for paired transitions 10 % to 90 % 9-+9ns
tEOPR1 EOP width at receiver must reject as
EOP; see
Figure 33
[1] 40 - ns
tEOPR2 EOP width at receiver must accept as
EOP; see
Figure 33
[1] 82 --ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 129 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.22
11.23 Ethernet AVB
Remark: The timing characteristics of the ENET_MDC and ENET_MDIO signals comply
with the IEEE standard 802.3.
Fig 33. Differential da ta-to-EOP transition skew and EOP width
002aab561
TPERIOD
differential
data lines
crossover point
source EOP width: tFEOPT
receiver EOP width: tEOPR1, tEOPR2
crossover point
extended
differential data to
SE0/EOP skew
n × TPERIOD + tFDEOP
Table 50. Dy namic characteristics: Ethernet
Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Based on simulation.
Symbol Parameter Conditions Min Typ Max Unit
RMII mode
fclk clock frequency for ENET_RX_CLK [1] - - 50.0 MHz
clk clock duty cycle [1] 45.0 - 55.0 %
tsu data input set-up
time ENET_RXDn, ENET_RX_ER,
ENET_RX_DV [1][2]
CCLK 100 MHz 4.4 - - ns
CCLK > 100 MHz 4.4 - - ns
thdata input hold time for ENET_RXDn, ENET_RX_ER,
ENET_RX_DV [1][2]
CCLK 100 MHz 1.3 - 0 ns
CCLK > 100 MHz 1.3 - 0 ns
tv(Q) data output valid
time for ENET_TXDn, ENET_TX_EN [1][2]
CCLK 100 MHz 9 .9 - 17.3 ns
CCLK > 100 MHz 9.9 - 17.3 ns
MII mode
fclk clock frequency for ENET_TX_CLK [1] - - 25.0 MHz
clk clock duty cycle [1] 45.0 - 55.0 %
fclk clock frequency for ENET_RX_CLK [1] - - 25.0 MHz
clk clock duty cycle [1] 45.0 - 55.0 %
tsu data input set-up
time for ENET_RXDn, ENET_RX_ER,
ENET_RX_DV [1][2]
CCLK 100 MHz 4.7 - - ns
CCLK > 100 MHz 4.7 - - ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 130 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Output drivers can drive a load 25 pF accommodating over 12 inch of PCB trace and the input
capacitance of the receiving device.
[2] Timing values are given from the point at which the clock signal waveform crosses 1.4 V to the valid input or
output level.
thdata input hold time for ENET_RXDn, ENET_RX_ER,
ENET_RX_DV [1][2]
CCLK 100 MHz 1.2 - 0 ns
CCLK > 100 MHz 1.2 - 0 ns
tv(Q) data output valid
time for ENET_TXDn, ENET_TX_EN,
ENET_TX_ER [1][2]
CCLK 100 MHz 10.0 - 18.2 ns
CCLK > 100 MHz 10.0 - 18.2 ns
Table 50. Dy namic characteristics: Ethernet
Tamb =
40
C to 105
C, VDD = 2.7 V to 3.6 V. CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Based on simulation.
Symbol Parameter Conditions Min Typ Max Unit
Fig 34. Ethernet RMII timing
Fig 35. Ethernet MII timing
aaa-025108
th
ENET_RX_CLK
ENET_TX_EN
ENET_TXDn
ENET_RXDn
ENET_RX_DV
tsu
tv(Q)
aaa-025109
t
h
ENET_RX_CLK
ENET_TX_EN
ENET_TX_CLK
ENET_RX_ER
ENET_TXDn
ENET_RXDn
ENET_RX_DV
t
su
t
v(Q)
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 131 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.24 SD/MMC and SDIO
Table 51. Dynamic characteristics: SD/MMC and SDIO
Tamb =
40
C to +105
C, VDD = 2.7 V to 3.6 V; CL = 20 pF. SAMPLE_DELAY = 0, DRV_DELAY = 0 in the SDDELAY
register, SDIOCLKCTRL = 0x84, sampl ed at 90 % and 10 % of the signal level, SLEW = 1 ns for SD_CLK pin, SLEW = 1 ns
for SD_DATn and SD_CMD pins. Simulated values in high-speed mode.
Symbol Parameter Conditions Min Typ Max Unit
fclk clock frequency on pin SD_CLK; data transfer mode - - 50 MHz
tsu(D) data input set-up time on pins SD_DATn as inputs
CCLK 100 MHz 14.4 - - ns
CCLK > 100 MHz 14.4 - - ns
on pins SD_CMD as inputs
CCLK 100 MHz 14.4 - - ns
CCLK > 100 MHz 14.4 - - ns
th(D) data input hold time on pins SD_DATn as inputs
CCLK 100 MHz 1.5 - - ns
CCLK > 100 MHz 1.5 - - ns
on pins SD_CMD as inputs
CCLK 100 MHz 1.5 - - ns
CCLK > 100 MHz 1.5 - - ns
tv(Q) data output valid time on pins SD_DATn as outputs
CCLK 100 MHz 1.9 - 3.5 ns
CCLK > 100 MHz 1.9 - 3.5 ns
on pins SD_CMD as outputs
CCLK 100 MHz 1.9 - 3.5 ns
CCLK > 100 MHz 1.9 - 3.5 ns
Fig 36. SD/MMC and SDIO timing
002aag204
SD_CLK
SD_DATn (O)
SD_DATn (I)
td(QV)
th(D)
tsu(D)
Tcy(clk)
th(Q)
SD_CMD (O)
SD_CMD (I)
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 132 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
11.25 LCD
Table 52. Dy namic characteristics: LCD
Tamb =
40
C to 105
C; VDD = 2.7 V to 3.6 V; CL = 30 pF. Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
fclk clock frequency on pi n LCD_DCLK - - 50 MHz
tv(Q) data output valid time on all
LCD output pins CCLK 100 MHz 0.9 - 1.6 ns
CCLK > 100 MHz 0.9 - 1.6 ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 133 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
12. Analog characteristics
12.1 BOD
Table 53. BOD static characteristics
Tamb =25
C; based on characterization; not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
Vth threshold voltage interrupt level 0
assertion 1.5 - 1.63 V
de-assertion 1.55 - 1.69 V
reset level 0
assertion 1.5 - 1.62 V
de-assertion 1.55 - 1.69 V
Vth threshold voltage interrupt level 1
assertion 1.54 - 1.68 V
de-assertion 1.6 - 1.75 V
reset level 1
assertion 1.55 - 1.68 V
de-assertion 1.61 - 1.74 V
Vth threshold voltage interrupt level 2
assertion 1.79 - 1.95 V
de-assertion 1.85 - 2.02 V
reset level 2
assertion 2.04 - 2.21 V
de-assertion 2.19 - 2.38 V
Vth threshold voltage interrupt level 3
assertion 2.62 - 2.86 V
de-assertion 2.77 - 3.03 V
reset level 3
assertion 2.62 - 2.85 V
de-assertion 2.78 - 3.02 V
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 134 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
12.2 12-bit ADC characteristics
[1] Based on characterization; not tested in production.
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[3] The input resistance of ADC channels 6 to 11 is higher than ADC channels 0 to 5.
[4] Cia represents the external capacitance on the analog input channel for sampling speeds of
5.0 Msamples/s. No parasitic capacitances included.
[5] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.
See Figure 37.
[6] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 37.
[7] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the
straight line which fits the ideal curve. See Figure 37.
Table 54. 12-bit ADC static characteristics
Tamb =
40
C to +105
C; 1.71 V
VDD
3.6 V; VSSA = VREFN = GND. ADC calibrated at Tamb = 25

C.
Symbol Parameter Conditions Min Typ[2] Max Unit
VIA analog input
voltage [3] 0-V
DDA V
Cia analog input
capacitance [4] -5.0- pF
fclk(ADC) ADC clock
frequency -80MHz
fssampling
frequency - - 5.0 Msamples/s
EDdifferential linearity
error 2.0 V VDDA 3.6 V
2.0 V < VREFP 3.6 V
fclk(ADC) = 80 MHz
[1][5] -3.0 - LSB
1.71 V VDDA 2.0 V
1.71 V VREFP 2.0 V
fclk(ADC) = 80 MHz
[1][5] -4.5 - LSB
[1][5] --LSB
EL(adj) integral
non-linearity 2.0 V VDDA 3.6 V
2.0 V < VREFP 3.6 V
fclk(ADC) = 80 MHz
[1][6] -4.0 - LSB
1.71 V VDDA 2.0 V
1.71 V VREFP 2.0 V
fclk(ADC) = 80 MHz
[1][6] -7.5 - LSB
[1][6] --LSB
EOoffset error calibrati on enabled [1][7] -2.2 - mV
Verr(FS) full-scale error
voltage 2.0 V VDDA 3.6 V
2.0 V < VREFP 3.6 V
fclk(ADC) = 80 MHz
[1][8] -3.0 - LSB
1.71 V VDDA 2.0 V
1.71 V VREFP 2.0 V
fclk(ADC) = 80 MHz
-2.5 - LSB
Ziinput impedance fs = 5.0 Msamples/s [9][10] 17.0 - - k
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 135 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[8] The full-scale error voltage or gain error (EG) is the difference between the straight-line fitting the actual
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See
Figure 37.
[9] Tamb = 25 C; maximum sampling frequency fs = 5.0 Msamples/s and analog input capacitance Cia =5pF.
[10] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including
Cia and Cio: Zi 1 / (fs Ci). See Table 21 for Cio. See Figure 38.
(1) Example of an actual transfer curve.
(2) The ideal transfer curve.
(3) Differential linearity error (ED).
(4) Integral non-linearity (EL(adj)).
(5) Center of a step of the actual transfer curve.
Fig 37. 12-bit ADC ch a ra c teristics
aaa-016908
4095
4094
4093
4092
4091
(2)
(1)
40964090 4091 4092 4093 4094 4095
7123456
7
6
5
4
3
2
1
0
4090
(5)
(4)
(3)
1 LSB
(ideal)
code
out
VREFP - VREFN
4096
offset
error
EO
gain
error
EG
offset error
EO
VIA (LSBideal)
1 LSB =
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 136 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Table 55. ADC samp ling times[1]
-40
C
Tamb <= 85
C; 1.71 V
VDDA
3.6 V; 1.71 V
VDD
3.6 V
Symbol Parameter Conditions Min Typ Max Unit
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 12 bit
tssampling time Zo < 0.05 k[3] 20 - - ns
0.05 k <= Zo < 0.1 k23 - - ns
0.1 k <= Zo < 0.2 k26 - - ns
0.2 k <= Zo < 0.5 k31 - - ns
0.5 k <= Zo < 1 k47 - - ns
1 k <= Zo < 5 k75 - - ns
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 10 bit
tssampling time Zo < 0.05 k[3] 15 - - ns
0.05 k <= Zo < 0.1 k18 - - ns
0.1 k <= Zo < 0.2 k20 - - ns
0.2 k <= Zo < 0.5 k24 - - ns
0.5 k <= Zo < 1 k38 - - ns
1 k <= Zo < 5 k62 - - ns
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 8 bit
tssampling time Zo < 0.05 k[3] 12 - - ns
0.05 k <= Zo < 0.1 k13 - - ns
0.1 k <= Zo < 0.2 k15 - - ns
0.2 k <= Zo < 0.5 k19 - - ns
0.5 k <= Zo < 1 k30 - - ns
1 k <= Zo < 5 k48 - - ns
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 6 bit
tssampling time Zo < 0.05 k[3] 9--ns
0.05 k <= Zo < 0.1 k10 - - ns
0.1 k <= Zo < 0.2 k11 - - ns
0.2 k <= Zo < 0.5 k13 - - ns
0.5 k <= Zo < 1 k22 - - ns
1 k <= Zo < 5 k36 - - ns
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 12 bit
tssampling time Zo < 0.05 k[3] 43 - - ns
0.05 k <= Zo < 0.1 k46 - - ns
0.1 k <= Zo < 0.2 k50 - - ns
0.2 k <= Zo < 0.5 k56 - - ns
0.5 k <= Zo < 1 k74 - - ns
1 k <= Zo < 5 k105 - - ns
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 137 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Characterized through simulation. Not tested in production.
[2] The ADC default sampling time is 2.5 ADC clock cycles. To match a given analog source output
impedance, the sampling time can be extended by adding up to seven ADC clock cycles for a maximum
sampling time of 9.5 ADC clock cycles. See the TSAMP bits in the ADC CTRL register.
[3] Zo = analog source output impedance.
[4] For VDD 2.5 V, add one additional clock cycle to the values in Table 55.
12.2.1 ADC input impedance
Figure 38 shows the ADC input impedance. In this figure:
ADCx represents slow ADC input channels 6 to 11.
ADCy represents fast ADC input channels 0 to 5.
R1 and Rsw are the switch-on resistance on the ADC input channel.
If fast channels (ADC inputs 0 to 5) are selected, the ADC input signal goes through
Rsw to the sampling capacitor (Cia).
If slow channels (ADC input s 6 to 11) are selecte d, the ADC input signal goes through
R1 + Rsw to the sampling capacitor (Cia).
Typical values, R1 = 487 , Rsw = 278
See Table 21 for Cio.
See Table 54 for Cia.
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 10 bit
tssampling time Zo < 0.05 k[3] 35 - - ns
0.05 k <= Zo < 0.1 k38 - - ns
0.1 k <= Zo < 0.2 k40 - - ns
0.2 k <= Zo < 0.5 k46 - - ns
0.5 k <= Zo < 1 k61 - - ns
1 k <= Zo < 5 k86 - - ns
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 8 bit
tssampling time Zo < 0.05 k[3] 27 - - ns
0.05 k <= Zo < 0.1 k29 - - ns
0.1 k <= Zo < 0.2 k32 - - ns
0.2 k <= Zo < 0.5 k36 - - ns
0.5 k <= Zo < 1 k48 - - ns
1 k <= Zo < 5 k69 - - ns
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 6 bit
tssampling time Zo < 0.05 k[3] 20 - - ns
0.05 k <= Zo < 0.1 k22 - - ns
0.1 k <= Zo < 0.2 k23 - - ns
0.2 k <= Zo < 0.5 k26 - - ns
0.5 k <= Zo < 1 k36 - - ns
1 k <= Zo < 5 k51 - - ns
Table 55. ADC samp ling times[1] …continued
-40
C
Tamb <= 85
C; 1.71 V
VDDA
3.6 V; 1.71 V
VDD
3.6 V
Symbol Parameter Conditions Min Typ Max Unit
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 138 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
12.3 Temperature sensor
[1] Absolute temperature accuracy.
[2] Based on simulation.
Fig 38. ADC input impedance
DAC
ADC
Rsw
R1
Cia
ADCx
ADCy
Cio
Cio
aaa-017600
Table 56. Te mperature sensor static and dynamic characteristics
VDD = VDDA = 1.71 V to 3.6 V
Symbol Parameter Conditions Min Typ Max Unit
DTsen sensor
temperature
accuracy
Tamb = 40 C to +105 C[1] -3.7C
ELlinearity error Tamb = 40 C to +105 C- - 3.7 C
ts(pu) power-up
settling time to 99% of temperature
sensor output value [2] - 10.0 15.0 s
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 139 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
[1] Measured over typical samples.
[2] Measured for samples over process corners.
Table 57. Te mperature sensor Linear-Least-Square (LLS) fit parameters
VDD = VDDA = 1.71 V to 3.6 V
Fit parameter Range Min Typ Max Unit
LLS slope Tamb = 40 C to +105 C[1] -2.04 - mV/C
LLS intercept at 0 CT
amb = 40 C to +105 C[1] - 584.0 - mV
Val ue at 30 C[2] 515.9 - 531.5 mV
VDD = VDDA 3.3 V; measured on matrix samples.
Fig 39. LLS fit of the temperature sensor output voltage
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 140 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13. Application information
13.1 Start-up behavior
Figure 40 shows the start-up timing after reset. The FRO 12 MHz oscillator provides the
default clock at Reset and provides a clean system clock shortly after the supply pins
reach operating voltage.
Fig 40. Start-up timing
Table 58. Typical start-up timing parameters
Parameter Description Value
taFRO start time 20 s
tbInternal reset de-asserted 151 s
tcLegacy image 262 s
Single image without CRC 245 s
Dual image without CRC 289 s
aaa-024049
valid threshold
= 1.71 V
processor status
V
DD
FRO status
internal reset
GND
boot time
user code
boot code
execution
finishes;
user code starts
FRO
starts
supply ramp-up
time
t
b
µst
a
µs
t
c
µs
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 141 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13.2 Standard I/O pin configuration
Figure 41 shows the possible pin modes for standar d I/O pi ns:
Digital output driver: enabled/disabled.
Digital input: Pull-up enabled/disabled.
Digital input: Pull-down enabled/disabled.
Digital input: Repeater mode enabled/disabled.
Z mode; High impedance (no cross-bar currents for floating inputs).
The default configuration fo r standard I/O pins is Z mode. The weak MOS devices provide
a drive capabi lity equivalent to pull-up and pull-down resistors.
The glitch filter rejects pulses of typical 12 ns width.
Fig 41. Standard I/O and RESE T pin configuration
data input to core
input buffer enable bit EZI
pull-up enable bit EPUN
pull-down enable bit EPD
analog I/O
aaa-015595
slew rate bit SLEW
data output from core
enable output driver
filter select bit ZIF
GLITCH
FILTER
ESD
ESD
VDD
VSS
PIN
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 142 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13.3 Connecting power, clocks, and debug functions
Figure 42 shows the basic board connections used to power the LPC546xx devices,
connect the external crystal and the 32 kHz oscillator for the RTC, and provide debug
capabilities via the serial wire port.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 143 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
(1) See Section 13.6 “XTAL oscillator for the values of C1, C2, C3, and C4.
(2) Position the decoupling capacitors of 0.1 μF and 0.01 μF as close as possible to the VDD pin. Add one set of decoupling
capacitors to each VDD pin.
(3) Position the decoupling capacitors of 0.1 μF as close as possible to the VREFN and VDDA pins. The 10 μF bypass capacitor
filters the power line. Tie VDDA and VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.
(4) Uses the ARM 10-pin interface for SWD.
(5) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see
Ref. 3.
(6) External pull-up resistors on SWDIO and SWCLK pins are optional because these pins have an internal pull-up enabled by
default.
(7) Position the decoupling capacitor of 0.1 F as close as possible to the VBAT pin. Tie VBAT to VDD if not used.
Fig 42. Power, clock, and d ebug connecti ons
SWDIO/PIO0_12
SWCLK/PIO0_11
RESETN
VSS
VSSA
PIO0_5
ADCx
RTCXIN
RTCXOUT
VDD
VDDA
VREFP
VREFN
LPC546xx
3.3 V
3.3 V
(1)
(2)
(3)
(3)
(7)
(1)
DGND DGND
AGND
1
3
5
7
9
2
4
6
8
10
DGND
DGND
DGND
C3
C4
0.01 μF
0.1 μF
DGND
10 μF
0.1 μF
AGND
AGND
AGND
10 μF
0.1 μF
0.1 μF
ISP select pins
n.c.
n.c.
n.c.
SWD connector
(6)
(4)
(6)
aaa-026743
PIO0_4
PIO0_6
3.3 V
~10 kΩ - 100 kΩ
VBAT
DGND
3.3 V
3.3 V
3.3 V
0.1 μF
XTALIN
XTALOUT DGND
C1
C2
(5)
~10 kΩ - 100 kΩ
3.3 V
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 144 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13.4 I/O power consumption
I/O pins are contributing to the overall dynam ic and static power consumption of the part.
If pins are configu red as digital inputs, a static current can flow depending on the voltage
level at the pin and the setting of the internal pull-up and pull-down resistors. This current
can be calculated using the parameters Rpu and Rpd given in Table 21 for a given input
voltage VI. For pins set to output, th e current drive strength is given by parameters IOH and
IOL in Table 21, but for calculating the total static current, you also need to consider any
external loads connected to the pin.
I/O pins also contribute to the dynamic power consumption when the pins are switching
because the VDD supply provides the current to charge and discharge all internal and
external capacitive loads connected to the pin in addition to powering the I/O circuitry.
The contribution from the I/O switching current Isw can be calculated as follows for any
given switching frequency f sw if the external capacitive load (Cext) is known (see Table 21
for the internal I/O capacitance):
Isw = VDD x fsw x (Cio + Cext)
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 145 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13.5 RTC oscillator
In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances CX1 and CX2
need to be connected exte rnally on RTCXIN and RTCXOUT. See Figure 43.
For best results, it is very critical to select a matching crystal for the on-chip oscillator.
Load capacitance (CL), series resistance (RS), and drive level (DL) are important
parameters to consider while choosing the crystal. After selecting the proper cr ystal, the
external load capacitor CX1 and CX2 values can also be generally determined by the
following expression:
CX1 = CX2 = 2CL (CPad + CParasitic)
Where:
CL - Crystal load capacitance
CPad - Pad capacitance of the RTCXIN and RTCXOUT pins (~3 pF).
CParasitic – Parasitic or stray capacitance of external circuit.
Although CParasitic can be ignored in general, the actual board layout and placement of
external component s influen ces the optimal values of external load capacitors. Therefore,
it is recommended to fine tune the values of external load capacitors on actual hardware
board to get the accurate clock frequency. For fine tuning, output the RTC Clock to the
CLOCKOUT pin and optimize the values of external load capacitors for minimum
frequency devia tio n.
Fig 43. RTC oscillator components
aaa-025723
LPC546xx
RTCXIN RTCXOUT
CX2
CX1
XTAL
=
CLCP
RS
L
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 146 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13.5.1 RTC Printed Circuit Board (PCB) design guidelines
Connect the crystal and external load capacitors on the PCB as close as possible to
the oscillator input and output pins of the chip.
The length of traces in the oscillation circuit should be as short as possible and must
not cross other signal lines.
Ensure that the load capacitors CX1, CX2, and CX3, in case of third overtone crystal
usage, have a common ground plane.
Loops must be made as small as possible to minimize the no ise coup le d in thr o ug h
the PCB and to keep the parasitics as small as possible.
Lay out the grou nd (GN D) pattern unde r crystal unit.
Do not lay out other signal lines under crystal unit for multi-layered PCB.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 147 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13.6 XTAL oscillator
In the XTAL oscillator circuit, only the crystal (XTAL) and the capacitances CX1 and CX2
need to be connected externally on XTALIN and XTALOUT. See Figure 44.
For best results, it is very critical to select a matching crystal for the on-chip oscillator.
Load capacitance (CL), series resistance (RS), and drive level (DL) are important
parameters to consider while choosing the crystal. After selecting the proper cr ystal, the
external load capacitor CX1 and CX2 values can also be generally determined by the
following expression:
CX1 = CX2 = 2CL (CPad + CParasitic)
Where:
CL - Crystal load capacitance
CPad - Pad capacitance of the XTALIN and XTALOUT pins (~3 pF).
CParasitic – Parasitic or stray capacitance of external circuit.
Although CParasitic can be ignored in general, the actual board layout and placement of
external component s influen ces the optimal values of external load capacitors. Therefore,
it is recommended to fine tune the values of external load capacitors on actual hardware
board to get the accurate clock frequency. For fine tuning, measure the clock on the
XTALOUT pin and optimize the values of external load capacitors for minimum frequency
deviation.
Fig 44. XTAL oscillator component s
aaa-025725
LPCxxxx
XTALIN XTALOUT
CX2
CX1
XTAL
=
CLCP
RS
L
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 148 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
13.6.1 XTAL Printed Circuit Board (PCB) design guidelines
Connect the crystal and external load capacitors on the PCB as close as possible to
the oscillator input and output pins of the chip.
The length of traces in the oscillation circuit should be as short as possible and must
not cross other signal lines.
Ensure that the load capacitors CX1, CX2, and CX3, in case of third overtone crystal
usage, have a common ground plane.
Loops must be made as small as possible to minimize the no ise coup le d in thr o ug h
the PCB and to keep the parasitics as small as possible.
Lay out the grou nd (GN D) pattern unde r crystal unit.
Do not lay out other signal lines under crystal unit for multi-layered PCB.
13.7 Suggested USB interface solutions
The USB device can be connected to the USB as self-powered device (see Figure 45) or
bus-powered device (s ee Figure 46).
On the LPC546xx, the USB_VBUS pin is 5 V tolerant only when VDD is applied and at
operating voltage level. Therefore, if the USB_VBUS function is connected to the USB
connector an d the de vice is self- po we re d, the USB_VBUS pin must be protected for
situations when VDD = 0 V.
If VDD is always at operating level while VBUS = 5 V, the USB_VBUS pin can be
connected direc tly to the VBUS pin on the USB con n ect or.
For systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin,
precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum
allowable voltage on the USB_VBUS pin in this case.
One method is to use a volt age divider to connect th e USB_VBUS pin to the VBUS on the
USB connector. The voltage divider ratio should be such that the USB_VBUS pin is
greater than 0.7 VDD to indicate a logic HIGH while below the 3.6 V allowable maximum
voltage.
For the following operat ing conditions
VBUSmax = 5.25 V
VDD = 3.6 V,
the voltage divider shou ld pr ov ide a red uc tio n of 3.6 V/5 .2 5 V or ~0. 68 6 V.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 149 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
The internal pull-up (1.5 k) can be enabled by setting the DCO N bit in th e
DEVCMDSTAT register to prevent the USB from timing out when there is a significant
delay between power-up and handling USB traffic. External circuitry is not required.
Remark: In certain applications, when a self-powered circuit is used without connecting
the VBUS, configure the USB_VB US pin fo r GPI O an d pr ov ide software that ca n dete ct
the host presence before enabling the internal pull-up resistor (1.5 k) and the
SoftConnect feature. Enabling the SoftConnect without host presence leads to USB
compliance failure.
Fig 45. USB interface o n a self-po wer ed device where USB_VBUS = 5 V
LPCxxxx
V
DD
R1
1.5 kΩ
aaa-023996
USB-B
connector
USB_DP
USB_DM
USB_VBUS
V
SS
RS = 33 Ω
RS = 33 Ω
USB
R2
R3
D+
D-
Two options exist for connecting VBUS to the USB_VBUS pin:
(1) Connect the regulator output to USB_VBUS. In this case, the USB_VBUS signal is HIGH whenever the part is powered.
(2) Connect the VBUS signal directly from the connector to the USB_VBUS pin. In this case, 5 V are applied to the USB_VBUS pin
while the regulator is ramping up to supply VDD. Since the USB_VBUS pin is only 5 V tolerant when VDD is at operating level,
this connection can degrade the performance of the part over its lifetime. Simulation shows that lifetime is reduced to 15 years
at Tamb = 45 °C and 8 years at Tamb = 55 °C assuming that USB_VBUS = 5 V is applied continuously while VDD = 0 V.
Fig 46. USB interf ace on a bus-powered device
REGULATOR
VBUS
LPCxxxx
VDD
R1
1.5 kΩ
aaa-023997
USB-B
connector
USB_DP
USB_DM
VSS
USB_VBUS(2)
USB_VBUS(1)
USB
D-
RS = 33 Ω
RS = 33 Ω
D+
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 150 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
14. Package outline
Fig 47. LQFP208 p ackage
UNIT A1A2A3bpcE
(1) eH
ELL
pZywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.15
0.05 1.45
1.35 0.25 0.27
0.17 0.20
0.09 28.1
27.9 0.5 30.15
29.85 1.43
1.08 7
0
o
o
0.080.121 0.08
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.75
0.45
SOT459-1 136E30 MS-026 00-02-06
03-02-20
D(1)
28.1
27.9
HD
30.15
29.85
E
Z
1.43
1.08
D
pin 1 index
bp
e
θ
EA1
A
Lp
detail X L
(A )
3
B
52
c
D
H
bp
E
HA2
vMB
D
ZD
A
ZE
e
vMA
X
1
208
157
156 105
104
53
y
wM
wM
0 5 10 mm
scale
LQFP208; plastic low profile quad flat package; 208 leads; body 28 x 28 x 1.4 mm SOT459-1
A
max.
1.6
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 151 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 48. TFBGA180 package
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
SOT570-3
SOT570-3
08-07-09
10-04-15
UNIT
mm max
nom
min
1.20
1.06
0.95
0.40
0.35
0.30
0.50
0.45
0.40
12.1
12.0
11.9
12.1
12.0
11.9 0.8 10.4 0.15 0.12
A
DIMENSIONS (mm are the original dimensions)
TFBGA180: thin fine-pitch ball grid array package; 180 balls
0 5 10 mm
scale
A1A2
0.80
0.71
0.65
b D E e e1
10.4
e2v w
0.05
y y1
0.1
ball A1
index area
BA
D
E
C
y
C
y1
X
A
BC
DE
F
H
K
G
L
J
MN
P
2468101214
135791113
b
e2
e1
e
e
1/2 e
1/2 e AC B
vMCwM
ball A1
index area
detail X
AA2
A1
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 152 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
15. Soldering
Fig 49. Reflow soldering of the LQFP208 package
SOT459-1
DIMENSIONS in mm
occupied area
Footprint information for reflow soldering of LQFP208 package
Ax
Bx
Gx
Gy
Hy
Hx
AyBy
P1P2
D2 (8×) D1
(0.125)
Ax Ay Bx By D1 D2 Gx Gy Hx HyP1 P2 C
sot459-1_fr
solder land
C
Generic footprint pattern
Refer to the package outline drawing for actual layout
31.300 31.300 28.300 28.3000.500 0.560 0.2801.500 0.400 28.500 28.500 31.550 31.550
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 153 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Fig 50. Reflow soldering of the TFBGA180 package
DIMENSIONS in mm
PSLSPSRHxHy
Hx
Hy
SOT570-3
solder land plus solder paste
occupied area
Footprint information for reflow soldering of TFBGA180 package
solder land
solder paste deposit
solder resist
P
P
SL
SP
SR
Generic footprint pattern
Refer to the package outline drawing for actual layout
detail X
see detail X
sot570-3_fr
0.80 0.400 0.400 0.550 12.575 12.575
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 154 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
16. Abbreviations
17. References
[1] LPC546xx User manual UM10912.
[2] LPC546xx Errata sheet.
[3] Technical note ADC design guidelines:
http://www.nxp.com/documents/technical_note/TN00009.pdf
Table 59. Abbreviations
Acronym Description
AHB Advanced High-performance Bus
APB Advanced Peripheral Bus
API Application Programming Interface
DMA Direct Memory Access
FRO oscillator Internal Free-Running Oscillator, tuned to the factory specified frequency
GPIO General Purpose Input/Output
FRO Free Running Oscillator
LSB Least Significant Bit
MCU MicroController Unit
PDM Pul se Density Modulation
PLL Phase-Locked Loop
SPI Serial Peripheral Interface
TCP/IP Transmission Control Protocol/Internet Protocol
TTL Transi st or-Transistor Lo g i c
USART Universal Asynchronous Receiver/Transmitter
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 155 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
18. Revision history
Table 60. Revision history
Document ID Release date Data sheet status Change notice Supersedes
LPC546xx v.1.6 20170421 LPC546xx v.1.5
Modifications: Updated Table 42 “Dynamic characteristics: I2S-bus interface pins [1][4].
LPC546xx v.1.5 20170403 Product data sheet - LPC546xx v.1.4
Modifications: Updated Table 51 “Dynamic characteristics: SD/MMC and SDIO”. The max clock
frequency is 50 MHz.
Updated Section 7.17.2 “SD/MMC card interface”: Supports up to a maximum of 50
MHz of interface frequency.
Updated Table 42 “Dynamic characteristics: I2S-bus interface pins [1][4]”.
Updated Figure 26 “I2S-bus timing (master)” and Figure 27 “I2S-bus timing (slave)”.
Updated Table 2 “Ordering options”. Parts LPC54618J512 ET180 and
LPC54618J512BD208 have Classic CAN.
Added Section 11.4 “Wake-up process”.
LPC546xx v.1.4 20170307 Product data sheet - LPC5460x v.1.3
Modifications: Changed data sheet title to LPC546xx.
Updated Table 16 “Static characteristics: Power consumption in deep-sleep and deep
power-down modes” and Table 17 “Static characteristics: Power consumption in
deep-sleep and deep power-dow n modes”.
LPC5460x v.1.3 20170224 Product data sheet - LPC5460x v.1.2
Modifications: Removed S parts. Data sheet title renamed to LPC5460x.
Removed AES-256 eng ine and SHA references throughout the document.
Security peripherals renamed to Security features.
Updated Section 4 “Marking”.
Updated Section 5 “Block diagram”.
Updated Figure 6 “LPC546xx Memory mapping”.
Updated Table 20 “Typical AHB/APB peripheral power consumption [3][4][5]”.
LPC5460x v.1.2 20170206 Product data sheet - LPC5460x v.1.1
Modifications: Updated address range details and description of the address range: 0x8000 0000 to
0xDFFF FFFF: See Table 7 “Memory usage and details”: Static memory chip select:
was 0x9000 0000 - 0x93 FFFF, now, 0x9000 0000 – 0x93FF FFFF.
Updated Figure 8 “LPC5460x clock generation .
Updated Power control in Section 2 “Features and benefits”: Ultra-low power Micro-tick
Timer, running from the Watchdog oscillator that can be used to wake up the device
from low power modes.
Updated Table 4 “Pin description”: PIO0_26, USB0_IDVALUE, Type is Input (I).
Updated Section 7.18.1.1 “Features”.
Updated Table 31 “Dynamic characteristics of the PLL0[1]”: Input frequency, Fin, Max
value is 25 MHZ.
LPC5460x v.1.1 20170124 Product data sheet - LPC5460x v.1
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 156 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Modifications: Regrouped Table 2 “Ordering options”.
Added text to Section 7.15.3.1 “Features”: Software support for AVB feature is
available from NXP Professional Services. See nxp.com for more details.
Removed Table note 2: fclk = cclk/CLKDIV +1. See LPC5460x UM10912 and updated
Table note 1 “See the LPC5460x user manual, UM10912 on how to program the wait
states for the different read (RPHASEx) and erase/program phases (PHASEx).”of
Section 11.2 “EEPROM”.
Updated Table 50 “Dynamic characteristics: SD/MMC and SDIO”: changed the
maximum clock frequency to 52 MHz.
Updated address range details and description of the address range: 0x8000 0000 to
0xDFFF FFFF: See Table 7 “Memory usage and details”:
LPC5460x v.1 20161215 Product data sheet - -
Table 60. Revision history …continued
Document ID Release date Data sheet status Change notice Supersedes
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 157 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
19. Legal information
19.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The prod uct sta tus of device (s) descri bed in this d ocument may have change d since this d ocument was p ublished and may dif fer in case of multiple devices. The latest product st atus
information is available on the Internet at URL http://www.nxp.com.
19.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warrant ies as to t he accuracy or completeness of
information included herein and shall have no liab ility for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and tit le. A short data sh eet is intended
for quick reference only and shou ld not b e relied u pon to cont ain det ailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semicond uctors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall pre va il.
Product specificat ion The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to off er functions and qualities beyond those described in the
Product data sheet.
19.3 Disclaimers
Limited warr a nty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warrant ies, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Se miconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidenta l ,
punitive, special or consequ ential damages (including - wit hout limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconduct ors’ aggregate and cumulat ive liability toward s
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semicondu ctors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descripti ons, at any time and without
notice. This document supersedes and replaces all informa tion supplied prior
to the publication hereof .
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipme nt, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in perso nal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconducto rs products in such equipment or
applications and ther efore such inclu sion and/or use is at the cu stomer’s own
risk.
Applications — Applications that are described herein for any of these
products are for il lustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and ope ration of their applications
and products using NXP Semiconductors product s, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suit able and fit for t he customer’s applications and
products planned, as well as fo r the planned application and use of
customer’s third party customer(s). Custo mers should provide appropriate
design and operating safeguards to minimize the risks associate d with their
applications and products.
NXP Semiconductors does not accept any liabil i ty related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party custo mer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by cust omer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individua l agreement. In case an individual
agreement is concluded only the ter m s and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing i n this document may be interpreted or
construed as an of fer t o sell product s that is open for accept ance or the gr ant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] dat a sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 158 of 160
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors prod uct is automotive qualified,
the product is not suitable for automotive use. It i s neit her qualif ied nor test ed
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automot ive specifications and standards, custome r
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such au tomotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconduct ors for an y
liability, damages or failed product claims resulting from customer design an d
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
19.4 Trademarks
Notice: All referenced b rands, produc t names, service names and trademarks
are the property of their respective ow ners.
I2C-bus — logo is a trademark of NXP B.V.
20. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.
Product data sheet Rev. 1.6 — 21 April 2017 159 of 160
continued >>
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
21. Contents
1 General description. . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information. . . . . . . . . . . . . . . . . . . . . 5
3.1 Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 5
4 Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Pinning information. . . . . . . . . . . . . . . . . . . . . 10
6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2.1 Termination of unused pins. . . . . . . . . . . . . . . 50
6.2.2 Pin states in different power modes . . . . . . . . 51
7 Functional description . . . . . . . . . . . . . . . . . . 52
7.1 Architectural overview . . . . . . . . . . . . . . . . . . 52
7.2 ARM Cortex-M4 processor. . . . . . . . . . . . . . . 52
7.3 ARM Cortex-M4 integrated Floating Point Unit
(FPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Memory Protection Unit (MPU). . . . . . . . . . . . 52
7.5 Nested Vectored Interrupt Controller (NVIC) for
Cortex-M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5.2 Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 53
7.6 System Tick timer (SysTick) . . . . . . . . . . . . . . 53
7.7 On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 53
7.8 On-chip flash . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.9 On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.10 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.11 Memory mapping . . . . . . . . . . . . . . . . . . . . . . 54
7.12 System control . . . . . . . . . . . . . . . . . . . . . . . . 57
7.12.1 Clock sources. . . . . . . . . . . . . . . . . . . . . . . . . 57
7.12.1.1 Free Run ning Oscillator (FRO). . . . . . . . . . . . 57
7.12.1.2 Watchdog oscillator (WDOSC). . . . . . . . . . . . 57
7.12.1.3 Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 58
7.12.2 System PLL (PLL0) . . . . . . . . . . . . . . . . . . . . 58
7.12.3 USB PLL (PLL1). . . . . . . . . . . . . . . . . . . . . . . 58
7.12.4 Audio PLL (PLL2) . . . . . . . . . . . . . . . . . . . . . . 58
7.12.5 Clock Generation . . . . . . . . . . . . . . . . . . . . . . 59
7.12.6 Brownout detection. . . . . . . . . . . . . . . . . . . . . 60
7.12.7 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.13 Power control . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.13.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.13.2 Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 61
7.13.3 Deep power-down mode . . . . . . . . . . . . . . . . 61
7.14 General Purpose I/O (GPIO) . . . . . . . . . . . . . 64
7.14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.15 Pin interrupt/pattern engine . . . . . . . . . . . . . . 64
7.15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.16 Serial peripherals . . . . . . . . . . . . . . . . . . . . . . 65
7.16.1 Full-speed USB Host/Device interface (USB0) . .
65
7.16.1.1 USB0 device contro l ler . . . . . . . . . . . . . . . . . 65
7.16.1.2 USB0 host controller . . . . . . . . . . . . . . . . . . . 66
7.16.2 High-speed USB Host/Device interface
(USB1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.16.2.1 USB1 device contro l ler . . . . . . . . . . . . . . . . . 66
7.16.2.2 USB1 host controller . . . . . . . . . . . . . . . . . . . 66
7.16.3 Ethernet AVB . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.16.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.16.4 SPI Flash Interface (SPIFI) . . . . . . . . . . . . . . 67
7.16.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.16.5 CAN Flexible Data (CAN FD) interface . . . . . 68
7.16.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.16.6 DMIC subsystem . . . . . . . . . . . . . . . . . . . . . . 68
7.16.6.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.16.7 Smart card interface. . . . . . . . . . . . . . . . . . . . 68
7.16.7.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.16.8 Flexcomm Interface serial communication. . . 68
7.16.8.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.16.8.2 SPI serial I/O contro ller . . . . . . . . . . . . . . . . . 69
7.16.8.3 I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 69
7.16.8.4 USART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.16.8.5 I2S-bus interface . . . . . . . . . . . . . . . . . . . . . . 70
7.17 Digital peripheral . . . . . . . . . . . . . . . . . . . . . . 71
7.17.1 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . 71
7.17.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.17.2 SD/MMC card interface . . . . . . . . . . . . . . . . . 72
7.17.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.17.3 External memory controller . . . . . . . . . . . . . . 72
7.17.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.17.4 DMA controller. . . . . . . . . . . . . . . . . . . . . . . . 74
7.17.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18 Counter/timers . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.1 General-purpose 32-bit timers/external event
counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.2 SCTi mer/PWM. . . . . . . . . . . . . . . . . . . . . . . . 75
7.18.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.18.3 Windowed WatchDog Timer (WWDT) . . . . . . 76
7.18.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.18.4 Real Time Clock (RTC) timer. . . . . . . . . . . . . 76
7.18.5 Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 76
7.18.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.18.6 Repetitive Interrupt Timer (RIT) . . . . . . . . . . . 77
7.18.6.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.19 12-bit Analog-to -Digital Converter (ADC). . . . 77
7.19.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
NXP Semiconductors LPC546xx
32-bit ARM Cortex-M4 microcontroller
© NXP Semiconductors N.V. 2017. A ll rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 21 April 2017
Document identifie r: LPC546xx
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
7.20 CRC engine . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.21 Temperature sensor . . . . . . . . . . . . . . . . . . . . 78
7.22 Security features. . . . . . . . . . . . . . . . . . . . . . . 78
7.22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.23 Code security (enhanced Code Read Protection -
eCRP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.24 Emulation and debugging. . . . . . . . . . . . . . . . 80
8 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 81
9 Thermal characteristics . . . . . . . . . . . . . . . . . 83
10 Static characteristics. . . . . . . . . . . . . . . . . . . . 84
10.1 General operating conditions . . . . . . . . . . . . . 84
10.2 Power-up ramp conditions . . . . . . . . . . . . . . . 84
10.3 CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4 Power consumption . . . . . . . . . . . . . . . . . . . . 87
10.5 Pin characteristics . . . . . . . . . . . . . . . . . . . . . 93
10.5.1 Electrical pin characteristics . . . . . . . . . . . . . . 96
11 Dynamic characteristics . . . . . . . . . . . . . . . . . 99
11.1 Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . 99
11.2 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.3 I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.4 Wake-up process . . . . . . . . . . . . . . . . . . . . . 101
11.5 External memory interface . . . . . . . . . . . . . . 102
11.6 System PLL (PLL0) . . . . . . . . . . . . . . . . . . . 111
11.7 USB PLL (PLL1) . . . . . . . . . . . . . . . . . . . . . 112
11.8 Audio PLL (PLL2) . . . . . . . . . . . . . . . . . . . . . 112
11.9 FRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.10 Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . 113
11.11 RTC oscillator. . . . . . . . . . . . . . . . . . . . . . . . 114
11.1 2 Watchdog oscillator . . . . . . . . . . . . . . . . . . . 115
11.13 I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.14 I2S-bus interface. . . . . . . . . . . . . . . . . . . . . . 118
11.15 SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . 121
11.16 SPIFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.17 DMIC subsystem . . . . . . . . . . . . . . . . . . . . . 125
11.18 Smart card interface. . . . . . . . . . . . . . . . . . . 126
11.19 USART interface. . . . . . . . . . . . . . . . . . . . . . 127
11.20 SCTimer/PWM output timing . . . . . . . . . . . . 128
11.21 USB interface characteristics . . . . . . . . . . . . 128
11.23 Ethernet AVB . . . . . . . . . . . . . . . . . . . . . . . . 129
11.24 SD/MMC and SDIO . . . . . . . . . . . . . . . . . . . 131
11.25 LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12 Analog characteristics . . . . . . . . . . . . . . . . . 133
12.1 BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.2 12-bit ADC characteristics . . . . . . . . . . . . . . 134
12.2.1 ADC input impedance. . . . . . . . . . . . . . . . . . 137
12.3 Temperature sensor . . . . . . . . . . . . . . . . . . . 138
13 Application information. . . . . . . . . . . . . . . . . 140
13.1 Start-up behavior . . . . . . . . . . . . . . . . . . . . . 140
13.2 Standard I/O pin configura ti on . . . . . . . . . . . 141
13.3 Connecting power, clocks, and debug
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
13.4 I/O power consumption . . . . . . . . . . . . . . . . 144
13.5 RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . 145
13.5.1 RTC Printed Circuit Board (PCB) design
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.6 XTAL oscillator. . . . . . . . . . . . . . . . . . . . . . . 147
13.6.1 XTAL Printed Circuit Board (PCB) design
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
13.7 Suggested USB interface soluti ons . . . . . . . 148
14 Package outline. . . . . . . . . . . . . . . . . . . . . . . 150
15 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
16 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . 154
17 References. . . . . . . . . . . . . . . . . . . . . . . . . . . 154
18 Revision history . . . . . . . . . . . . . . . . . . . . . . 155
19 Legal information . . . . . . . . . . . . . . . . . . . . . 157
19.1 Data sheet status. . . . . . . . . . . . . . . . . . . . . 157
19.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 157
19.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . 157
19.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . 158
20 Contact information . . . . . . . . . . . . . . . . . . . 158
21 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159