www.irf.com 1
4/20/10
IRG6B330UDPbF
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
Circuits in PDP Applications
l Low VCE(on) and Energy per Pulse (EPULSETM)
for Improved Panel Efficiency
l High Repetitive Peak Current Capability
l Lead Free Package
PDP TRENCH IGBT
GC E
Gate Collector Emitter
TO-220AB
E
G
n-channel
C
PD - 96304
VCE min 330 V
VCE(ON) typ. @ IC = 70A 1.69 V
IRP max @ TC= 25°C
c
250 A
TJ max 150 °C
Key Parameters
Absolute Maximum Ratings
Parameter Units
VGE Gate-to-Emitter Voltage V
IC @ TC = 25°C Continuous Collector Current, VGE @ 15V A
IC @ TC = 100°C Continuous Collector, VGE @ 15V
IRP @ TC = 25°C Repetitive Peak Current
c
PD @TC = 25°C Power Dissipation W
PD @TC = 100°C Power Dissipation
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw N
Thermal Resistance
Parameter Typ. Max. Units
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT)
d
––– 0.80
RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode)
d
1.6 2.4
RθCS Case-to-Sink (flat, greased surface) 0.24 ––– °C/W
RθJA Junction-to-Ambient (typical socket mount)
d
––– 40
Weight 6.0 (0.21) ––– g (oz)
250
300
-40 to + 150
10lb
x
in (1.1N
x
m)
160
63
1.3
Max.
40
70
±30
E
C
G
IRG6B330UDPbF
2www.irf.com
Notes:
Half sine wave with duty cycle = 0.1, ton=2µsec.
Rθ is measured at TJ of approximately 90°C.
Pulse width 400µs; duty cycle 2%.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVCES Collector-to-Emitter Breakdown Voltage 330 ––– ––– V
∆ΒVCES/TJ Breakdown Voltage Temp. Coefficient ––– 0.34 ––– V/°C
––– 1.18 1.48
––– 1.36 1.68
––– 1.69 2.09 V
––– 2.26 2.76
–1.93–
VGE
(
th
)
Gate Threshold Voltage 2.6 ––– 5.0 V
VGE
(
th
)
/TJGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
ICES Collector-to-Emitter Leakage Current ––– 2.0 25 µA
––– 5.0 ––
––– 100 ––
IGES Gate-to-Emitter Forward Leakage ––– ––– 100 nA
Gate-to-Emitter Reverse Leakage ––– ––– -100
gfe Forward Transconductance ––– 50 ––– S
Q
g
Total Gate Charge ––– 85 ––– nC
Qgc Gate-to-Collector Charge ––– 31 –––
td(on) Turn-On dela
y
time 47 IC = 25A, VCC = 196V
trRise time 37 ns RG = 10, L=200
µ
H, LS= 200nH
td(off) Turn-Off dela
y
time 176 TJ = 25°C
tfFall time 99
td(on) Turn-On dela
y
time 45 IC = 25A, VCC = 196V
trRise time 38 ns RG = 10, L=200
µ
H, LS= 200nH
td(off) Turn-Off dela
y
time 228 TJ = 15C
tfFall time 183
tst Shoot Through Blocking Time 100 ––– ––– ns
EPULSE Energy per Pulse µJ
Ciss Input Capacitance ––– 2297 –––
Coss Output Capacitance ––– 141 ––– pF
Crss Reverse Transfer Capacitance ––– 74 ––
LCInternal Collector Inductance ––– 5.0 –– Between lead,
nH 6mm (0.25in.)
LEInternal Emitter Inductance ––– 13 –– from package
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
IF
(
AV
)
Average Forward Current at
TC=155°C
IFSM Non Repetitive Peak Surge Current ––– ––– 100 A TJ = 155°C, PW = 6.0ms half sine wave
VFForward Voltage ––– 1.19 1.3 V
––– 0.94 1.0
trr Reverse Recovery Time ––– 35 60 ns
–43– TJ = 25°C
–67– TJ = 12C IF = 8A
Qr
r
Reverse Recovery Charge ––– 60 –– nC TJ = 25°C di/dt = 200A/µs
––– 210 –– TJ = 125°C VR = 200V
Irr Peak Recovery Current –– 2.8 ––– A TJ = 25°C
––– 6.3 –– TJ = 125°C
Static Collector-to-Emitter Voltage
VCE(on)
VGE = 15V, ICE = 70A, TJ = 150°C
––– 834 ––
VCE = VGE, ICE = 500
µ
A
VCE = 330V, VGE = 0V
VCE = 330V, VGE = 0V, TJ = 150°C
––– 985 ––
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15V
e
VCC = 240V, VGE = 15V, RG= 5.1
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 10C
and center of die contact
VGE = 30V
VGE = -30V
ƒ = 1.0MHz, See Fig.13
VGE = 0V
L = 220nH, C= 0.40µF, VGE = 15V
Conditions
VGE = 0V, ICE = 1 mA
Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 120A
e
VGE = 15V, ICE = 25A
e
VGE = 15V, ICE = 70A
e
VGE = 15V, ICE = 40A
e
VCE = 330V, VGE = 0V, TJ = 100°C
IF = 8A
IF = 8A, TJ = 150°C
IF = 1A, di/dt = -50A/µs, VR =30V
VCE = 30V
Conditions
––– –– 8.0 A
IRG6B330UDPbF
www.irf.com 3
Fig 1. Typical Output Characteristics @ 25°C
Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C
Fig 2. Typical Output Characteristics @ 75°C
Fig 5. Typical Transfer Characteristics Fig 6. VCE(ON) vs. Gate Voltage
0481216
VCE (V)
0
40
80
120
160
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0481216
VCE (V)
0
40
80
120
160
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0481216
VCE (V)
0
40
80
120
160
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0 4 8 12 16
VCE (V)
0
40
80
120
160
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
2 4 6 8 10 12 14 16
VGE (V)
0
50
100
150
200
250
300
ICE (A)
TJ = 25°C
TJ = 150°C
0 5 10 15 20
VGE (V)
0
2
4
6
8
10
12
14
VCE (V)
TJ = 25°C
TJ = 150°C
IC = 25A
IRG6B330UDPbF
4www.irf.com
Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
Fig 9. Typical EPULSE vs. Collector Current
Fig 11. EPULSE vs. Temperature Fig 12. Forward Bias Safe Operating Area
0 25 50 75 100 125 150
TC, Case Temperature (°C)
0
10
20
30
40
50
60
70
80
IC, Collector Current (A)
170 180 190 200 210 220 230 240
IC, Peak Collector Current (A)
400
500
600
700
800
900
1000
Energy per Pulse (µJ)
VCC = 240V
L = 220nH
C = variable 100°C
25°C
25 50 75 100 125 150
TJ, Temperature (ºC)
200
400
600
800
1000
1200
1400
Energy per Pulse (µJ)
VCC = 240V
L = 220nH
t = 1µs half sine C= 0.4µF
C= 0.3µF
C= 0.2µF
180 190 200 210 220 230 240
VCE, Collector-to-Emitter Voltage (V)
400
500
600
700
800
900
1000
Energy per Pulse (µJ)
L = 220nH
C = 0.4µF
100°C
25°C
25 50 75 100 125 150
Case Temperature (°C)
0
100
200
300
Repetitive Peak Current (A)
ton= 2µs
Duty cycle = 0.1
Half Sine Wave
1 10 100 1000
VCE (V)
1
10
100
1000
IC (A)
10 µs
100 µs
1ms
IRG6B330UDPbF
www.irf.com 5
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.146 0.000131
0.382 0.001707
0.271 0.014532
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τC
Ci= τi/Ri
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (DIODE)
0100 200 300
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 20 40 60 80 100 120
QG Total Gate Charge (nC)
0
5
10
15
20
25
VGE, Gate-to-Source Voltage (V)
VDS= 240V
VDS= 200V
VDS= 150V
ID= 25A
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W)
τι (sec)
0.07854 0.000637
0.829201 0.000532
1.002895 0.003412
0.490875 0.055432
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci
i
/
Ri
Ci= τi
/
Ri
τ
τ
C
τ
4
τ
4
R
4
R
4
IRG6B330UDPbF
6www.irf.com
Fig. 17 - Typical Forward Voltage Drop Characteristics
Fig. 19- Typical Stored Charge vs. di
F
/dt
Fig. 18 - Typical Reverse Recovery vs. di
F
/dt
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
1K
VCC
DUT
0
L
Fig. 22 - Gate Charge Circuit (turn-off)
DRI VER
DUT
L
C
VCC
RG
RG
B
A
Ipulse
Energy
V
CE
I
C
Current
PULSE A
PULSE B
t
ST
Fig.20 - Switching Loss Circuit
100 1000
dif / dt - (A / µs)
20
30
40
50
60
70
80
90
trr - (ns)
IF = 8.0A, TJ =125°C
IF = 8.0A, TJ =25°C
0.0 0.5 1.0 1.5 2.0 2.5
VFM, Forward Voltage Drop (V)
0.1
1
10
100
IF, Instantaneous Forward Current (A)
Tj = 150°C
Tj = 25°C
100 1000
dif / dt - (A / µs)
0
100
200
300
400
Qrr - (ns)
IF = 8.0A, TJ =125°C
IF = 8.0A, TJ =25°C
IRG6B330UDPbF
www.irf.com 7
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/2010
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkigbt.html
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
/27&2'(
(;$03/( 7+,6,6$1,5)
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17+($66(0%/</,1(&
$66(0%/('21:: ,17(51$7,21$/ 3$57180%(5
5(&7,),(5
/27&2'(
$66(0%/<
/2*2
<($5 
'$7(&2'(
:((.
/,1(&